| 研究生: |
郭武修 Kuo, Wu-Hsiu |
|---|---|
| 論文名稱: |
異種鄰近物體之最短平均距離查詢 Shortest Average-Distance Query on Heterogeneous Neighboring Objects |
| 指導教授: |
李強
Lee, Chiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 最短平均距離查詢 、基於位置之查詢 、異種物體 、異種鄰近物體 |
| 外文關鍵詞: | Shortest average-distance query, Location-based queries, Heterogeneous objects, Heterogeneous neighboring objects |
| 相關次數: | 點閱:89 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年來,有很多研究將目標放在如何在伺服器端有效的管理這些物體,以提供使用者透過無線網路去對物體資料作查詢。
這樣的系統可以允許使用者在任何時間任何地點查詢他周圍附近物體的狀況,進而可以有進一步的反應動作。
這一類跟靜止或移動物體的所在位置相關之查詢被稱為基於位置之查詢(location-based queries)。
傳統的 location-based queries 大多是針對空間中單種類型的物體 (i.e., single data source) 作查詢,
像是找出離使用者最近的餐廳 (nearest neighbor queries) 或是找出在使用者週遭的電影院 (range queries) 。
然而在現實生活中,空間中存在著許多不同種類的物體,我們稱這些不同種類的物體為異種物體 (heterogeneous objects,簡稱為 HOs)。
如果在 HOs 中任兩個物體資料的距離都小於或等於 d,則此 HOs
被稱為異種鄰近資料 (heterogeneous neighboring objects, 簡稱為 HNOs)。
在本論文中,我們提出一種新穎且有用之 location-based query 來針對 HNOs 作處理,進而提供給使用者有用的 HNOs 資訊。
這個新穎的 location-based query 稱之為最短平均距離查詢 (shortest average-distance query,簡稱為 SADQ)。
考慮 n 類 HOs,分別為 HO1, HO2, ..., HOn。
假設在空間中有 m 組 HNOs,SADQ 會從這 m 組 HNOs 中找一個具有最短 average-distance 的 HNOs。
為了有效率的處理 shortest average-distance query,我們發展一個有效率的 SADQ 演算法。
此演算法可以降低在回答 shortest average-distance query 時的計算成本。我們實作大量的實驗來證明 SADQ 演算法之效益及效率。
In recent years, many researchers focus on how to effectively manage objects on the server side and then provide the user to query the objects over the wireless network.
Such a system allows user to query information of objects around him at anytime and anywhere.
This type of query associated with the location of static or moving objects is called the location-based query.
Most of processing techniques for the conventional location-based queries focus on single type of objects (i.e., single data source),
such as finding a nearest restaurant to the user (nearest neighbor queries) or finding the theaters closer to the user (range queries).
However, in real life, there are many different types of objects.
We term the different types of objects (i.e., multiple data source) the heterogeneous objects (HOs for short).
If the distance between any two objects in HOs is less than or equal to the user-defined distance d,
then the HOs is a heterogeneous neighboring objects (HNOs for short).
In this thesis, we propose a novel and useful location-based query on the HNOs, so as to provide the useful HNOs information.
Such a location-based query is named the shortest average-distance query (SADQ for short).
Consider the n types of data sources, HO1, HO2, ..., HOn.
Assume that there exist m sets of HNOs, SADQ finds a set of HNOs with the shortest average-distance among these m sets of HNOs.
To efficiently process the shortest average-distance query, we develop an efficient algorithm, the SADQ algorithm.
It can reduce the computation cost for answering the SADQ.
Comprehensive experiments are performed on both synthetic and real datasets to demonstrate the effectiveness and the
efficiency of the SADQ algorithm.
[1]N. Roussopoulos, S. Kelley, and F. Vincent, “ Nearest neighbor queries,” in SIGMOD, pages 71-79, 1995.
[2]G. Hjaltason, and H. Samet, “Distance Browsing in Spatial Databases,” in ACM TODS, 24(2), pages 265-318, 1999.
[3]R. Weber, H.-J. Schek, S. Blottm “Quantitative Analysis and Performance Study for Similarity-Search Methods in High- Dimensional Spaces,” in VLDB, pages 194-205, 1998.
[4]A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high dimensions via hashing,” in VLDB, pages 518-529, 1999.
[5]Y. Tao, K. Yi, C. Sheng, and P. Kalnis, “Quality and efficiency in high dimensional nearest neighbor search,” in SIGMOD, pages 563-576, 2009.
[6]Y. Tao,and C. Sheng, “Fast Nearest Neighbor Search with Keywords,” in IEEE (TKDE), pages 878-888, 2013.
[7]J. Lu, Y. Lu, and G. Cong, “Reverse spatial and textual k nearest neighbor search,” in SIGMOD, pages 349-360, 2011.
[8]D. Papadias, Q. Shen, Y. Tao, and K. Mouratidis, “Group nearest neighbor queries,” in ICDE, pages 301-312, 2004.
[9]D. Papadias, Q. Shen, Y. Tao, K. Mouratidis, and C.K. Hui, “Aggregate nearest neighbor queries in spatial databases,” in ACM Transactions on Database Systems 30(2), pages 529-576, 2005.
[10]M.L. Yiu, N. Mamoulis, and D. Papadias, “Aggregate nearest neighbor queries in road networks,” in IEEE (TKDE), pages 820-833, 2005.
[11]L. Zhu, Y. Jing, W. Sun, D. Mao, and P. Liu, “Voronoi-based aggregate nearest neighbor query processing in road networks,” in GIS, pages 518-521, 2010.
[12]A. Guttman, “R-trees: A dynamic index structure for spatial searching,” in SIGMOD, pages 47-57, 1984.
[13]A. Prasad Sistla, Ouri Wolfson, Sam Chamberlain, and Son Dao, “Modeling and Querying Moving Objects, Proceedings of the Thirteenth,” in International Conference on Data Engineering, pages.422-432, 1997.
[14]O. Wolfson, A.P. Sistla, B. Xu, J. Zhou, S. Chamberlain, Y. Yesha, and N. Rishe, “Tracking moving objects using database technology,” in DOMINO, pages 112-119, 1999.
[15]M. A. Cheema, L. Brankovic, X. Lin, W. Zhang, and W. Wang, “Continuous Monitoring of Distance-Based Range Queries,” in IEEE (TKDE), pages 1182-1199, 2011.
[16]D. Yung, M. L. Yiu, and E. Lo, “A Safe-Exit Approach for Efficient Network-Based Moving Range Queries,” in DKE, pages 126-147, 2012.
[17]H. Hu, J. Xu, and D. L. Lee, “A generic framework for monitoring continuous spatial queries over moving objects,” in SIGMOD, pages. 479-490, 2005.
[18]M. A. Cheema, L. Brankovic, X. Lin, W. Zhang, and W. Wang, “Continuous monitoring of distance-basedrangequeries,” in IEEE (TKDE), pages 1182-1199, 2011.
[19]D. Papadias, Q. Shen, Y. Tao, K. Mouratidis. C.K. Hui, “Aggregate nearest neighbor queries in spatial databases,” in ACM Transactions on Database Systems 30(2), pages 529-576, 2005.
[20]D. Zhang, C. Y. Chan, K. L. Tan, “Nearest Group Queries,” in SSDBM, pages 7-18, 2013.
[21]D. Zhang, Y. M. Chee, A. Mondal, A. K. H. Tung, and M. Kitsuregawa, “Keyword search in spatial databases: Towards searching by document,” in ICDE, pages 688-699, 2009.
[22]D. Zhang, B. C. Ooi, and A. K. H. Tung, “Locating mapped resources in web 2.0,” in ICDE, pages 521-532, 2010.
校內:2019-07-21公開