| 研究生: |
蕭世祥 Shiou, Sai-Shiang |
|---|---|
| 論文名稱: |
擬靜態有限元素模型分析膝下殘肢與義肢承筒之介面壓力 Investigation of Interface Pressure Between Below-Knee Stump and Prosthetic Socket Using a Quasi-Static Nonlinear Finite Element Model |
| 指導教授: |
許來興
Hsu, Lai-Hsing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 有限元素 、膝下截肢 、介面應力 、擬靜態 、義肢承筒 、MARC |
| 外文關鍵詞: | Interface stress, MARC, Prosthetic socket, BK amputee, Quasi-Static, Contact, Finite element analysis |
| 相關次數: | 點閱:190 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
膝下截肢義肢承筒的製作在臨床上沒有一定的準則。對於膝下截肢的患者,義肢承筒為義肢中與人體殘肢接觸的部分,並且是負責義肢在人體下肢負荷時的穩定支撐及力量傳遞的介面。因此,殘肢與承筒間的介面壓力就顯得非常重要,截肢手術後因為下肢結構的改變,若設計不良就會導致殘肢受力不均,亦造成穿戴的併發症,導致其它功能上的代償,甚至需要二度截肢。電腦輔助設計和有限元素分析應用在膝下殘肢義肢承筒設計,可以為臨床輔具設計和膝下殘肢與軟墊(Liner)間的介面應力探討節省龐大的實驗及製作開支。
本研究建立殘肢的擬靜態有限元素模型(Quasi-Static Finite Element Model)並配合接觸與摩擦條件,經過非線性有限元素分析軟體MARC計算後,得到膝下殘肢與軟墊間介面正應力及剪應力在整個站立週期的分佈;分析結果與壓力量測實驗所得的數據做比較,了解非線性有限元素模型可以模擬整個站立週期在膝下殘肢與軟墊間介面正應力及剪應力的分佈。應力值達可接受範圍內的殘肢模型,即可作為設計製作承筒之依據。
關鍵字:義肢承筒、膝下截肢、介面應力、擬靜態、MARC、有限元素
Abstract
During designing a BK (below-knee) prosthetic socket, the interface pressures between stump and socket are the most important considerations. At the stance phase of gait cycle of an amputee wearing prosthesis, the prosthetic socket is expected to support and uniformly distribute the entire weight of the amputee. If the interface pressures at sensitive areas of the stump are too large, it will induce pain, discomfort and breakdown. The objective of this study is to use finite element analysis package to estimate and analyze the pressures between stump and socket at three different walking speeds.
In the study, a computer-aided software was employed to construct the CAD models of the stump, bone, and socket. Then, this assembly model is transferred to a finite element analysis system, MARC, which is capable of analyzing nonlinear problem. The quasi-static dynamic boundary condition is designated to simulate the whole stance phase of the gait cycle of an amputee wearing prosthesis, and also the contact conditions are also taken into consideration. After solving these three quasi static dynamic nonlinear finite element model, we could get the distribution of the interface pressures between stump and liner. These results were compared with the data from the measuring of experiment.
The results of this study may provide an objective information for prosthetist to design and fabricate the prosthetic sockets.
Keywords:Prosthetic socket, Interface stress, BK amputee, Contact, Finite element analysis, MARC, Quasi-Static
[Ansy 04] ANSYS 8.0 HTML Online Documentation, Structural Analysis Guide, Contact SAS IP, Inc., USA, 2003
[Chen 02] Chen, Y. S., Chie, W. C., Lan, C., Lin, M. C., Lai, J. S., and Lien, I. N., 2002, “Rates and Characteristics of Lower Limb Amputations in Taiwan,” Prosthetics and Orthotics International, Vol. 26, No. 1, pp. 7-14.
[Dona 90] Donald, G. S., 1990, Prosthesis and Orthotics. Appleton & Lange Inc., USA.
[Faus 05] Faustini, M.C., Neptune, R.R., Crawford, R.H., 2005, “The quasi-static response of compliant prosthetic sockets for transribial amputees using finite element methods,” Medical Engineering & Physics, Vol. 27, No. 37, pp. 1371-1377.
[Gage 85] Gag,e J.R., Hicks, R.,1985, “Gait analysis in prosthetics”, Clinical Prosthetics and Orthotics, 9: 3: 17-23.
[Gitt 91] Gitter, A., Czerniecki, J.M., and DeGroot, D.M., 1991, “Biomechanical analysis of the influence of prosthetic feet on below-knee amputee walking”, Am J Phys Med Recabil, 70: 142-8.
[Kay 75] Kay, HW., and Newman, JD., 1975, “Relative incidences of new amputations”, Orthot Prosthet Vol.29, No.2, pp.3-16.
[Marc 00] MARC User Manual Vol. A-C. MARC Analysis Research Corporation,Palo Alto, California,U.S.A.,2000
[Orth 01] OrthoTrak 5.0 Gait Analysis Software ,Motion Analysis Corporation 3617 Westwind Blvd. Sanata Rosa, CA, USA 95403, 2001.
[Perr 92] Perry, J., 1992, Gait Analysis: Normal and Pathological Function, Slack Inc., Thorofare, New Jersey, USA.
[Ques 91] Quesasa, P., and Skinner, H. B., 1991, Analysis of a Below-Knee Patellar Tendon-Bearing Prosthesis: a Finite Element Study,” Journal of Rehabilitation Research & Development, Vol. 28, No. 3, pp. 1-12.
[Reyn 92] Reynolds, D. P., and Lord, M., 1992, “Interface Load Analysis for Computer-Aided Design of Below-Knee Prosthetic sockets,” Medical and Biological Engineering and Computing,” Vol. 30, pp. 419-426.
[Sand 93] Sanders, J. E., and Daly, C. H., 1993, “Normal and Shear Stresses on a Residual Limb in a Prosthetic Socket during Ambulation: Comparison of Finite Element Results with Experimental Measurements,” Journal of Rehabilitation Research & Development, Vol. 30, No. 2, pp. 191-204.
[SDRC 99] SDRC, 1999, I-DEAS Help Library, Structural Dynamics Research Corporation, USA.
[Shur 90] Shurr, D.G., and Cook, T.M. Prosthetic and Orthotics. American Prosthetics Inc. 1990.
[Silv 97] Silver-Thorn, M. B., and Childress, D. S., 1997, “Generic, Geometric Finite Element Analysis of the Transtibial Residual Limb and Prosthetic Socket,” Journal of Rehabilitation Research & Development, Vol. 34, No. 2, pp. 271-186.
[Silv 96] Silver-Thorn, M. B., and Childress, D. S., 1996, “Parametric Analysis Using the Finite Element Method to Investigate Prosthetic Interface Stresses for Persons with Trans-Tibial Amputation,” Journal of Rehabilitation Research & Development, Vol. 33, No. 3, pp. 227-239.
[Stee 88] Steege, J. W., and Childress, D. S., 1988, “Finite Element Prediction of Pressure at the Below-Knee Socket Interface,” Report of ISPO Workshop on CAD/CAM in Prosthetic and Orthotics, pp. 71-82.
[Stee 87] Steege, J. W., and Schnur, D. S., 1987, “Prediction of Pressure at the Below-Knee Socket Interface by Finite Element Analysis,” ASME Symposium on the Biomechanics of Normal and Pathological Gait, Boston, Vol. l4, pp. 39-43.
[Suth 80] Sutherland, DH., Olshen RA., Cooper, L., Woo SLY., 1980, “The development of mature walking”, J Bone Joint Surg, Vol.62-A, No.3, pp. 336-353.
[Vaug 92] Vaughan, C. L., Davis, B. L, and Connor, J. C., 1992, Dynamics of Human Gait, Human Kinetics Publishers, Champaign, Illinois, USA.
[Zhan 00] Zhang, M., and Robert, C., 2000, “Comparison of Computational Analysis with Clinical Measurement of Tresses on Below-Knee Residual Limb in a Prosthetic Socket,” Medical Engineering & Physics, Vol. 22, pp. 607-612.
[Zhan 03] Zhang, M., Jia, X., Lee, and W,C.C., 2003, “Load transfer mechanics between trans-tibial prosthetic socket and residual limb--Dynamic effects” Medical Engineering & Physics ,Vol. 25, No. 37, pp. 1371-1377.
[Zhan 95] Zhang, M., Lord, M., Turner-Smith, A. R. and Roberts, V. C., 1995, “Development of a non-linear finite element modeling of the below-knee prosthetic socket interface,” Medical Engineering & Physics, Vol.17, No.8, pp.559-566.
[Zhan 96] Zhang, M., Turner-Smith, A. R., Roberts, V. C. and Tanner, A., 1996, “Friction action at lower limb/prosthetic socket interface,” Medical Engineering & Physics, Vol.18, No.3, pp.207-214.
[Zhan 97] Zhang, M., Zheng, Y. P. and Mak, A. F. T., 1997, “Estimating the effective Young’s modulus of soft tissues from indentation tests-nonlinear finite element analysis of effects of friction and large deformation,” Medical Engineering & Physics, Vol.19, No.6, pp.512-517.
[Zhan 98] Zhang, M., Mak, A. F. T., and Roberts, V. C., 1998, “Finite Element Modeling of a Residual Lower-Limb in a Prosthetic Socket: A Survey of the Development in the First Decade,” Medical Engineering & Physics, Vol. 20, No. 5, pp. 360-373.
[李 05] 李輝煌,Ansys工程分析基礎與觀念,高立圖書有限公司,台北,2005。
[林 05] 林罡生,膝下殘肢與義肢承筒在不同行走速度下之介面應力分析,國立成功大學機械工程系,碩士論文,2005。
[黃 03] 黃健,拘束邊界之曲面多樣化編修應用於義肢承筒數位化設計,國立成功大學機械工程系,碩士論文,2003。
[黃 02] 黃國峰,膝下截肢患者穿戴新型義肢在平地、斜坡和階梯之步態和能量消耗分析,博士論文,2002。
[楊 98] 楊世偉, 膝下義肢承筒之有限元素分析. 中華醫學工程學刊 18:203-208,1998。
[楊 04] 楊沛霖,許來興,黃國峯,林罡生,石旭生,膝下截肢者之殘肢三維模型建立與介面應力分析,中國機械工程學會第二十一屆全國學術研討會論文集,2004。