| 研究生: |
李肯哲 Li, Ken-Che |
|---|---|
| 論文名稱: |
利用硫化亞鐵還原及催化氧化降解硝基苯之研究 Reduction and catalytic oxidation of nitrobenzene using iron sulfide |
| 指導教授: |
林財富
Lin, Tsair-Fuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 硝基苯 、硫化亞鐵 、現地氧化 、現地還原 、先還原後氧化 |
| 外文關鍵詞: | Nitrobenzene, Ferrous sulfide, In-situ, Combined process |
| 相關次數: | 點閱:88 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
硝基苯(Nitrobenzene)是一種重要且普遍使用的工業化合物,在使用過程中難免因為洩漏、滲透、處置不當而污染環境。由於本身結構的特性使之易還原不易被氧化及生物降解,而還原的最終產物苯胺也具有高毒性,因此選擇合適處理技術以徹底降解硝基苯具有實際的意義。本研究利用硫化亞鐵(FeS)直接還原硝基苯以及利用其所釋出的亞鐵離子作為過氧化氫的催化劑,並將兩種方法結合,探討先還原後氧化處理硝基苯的可行性。實驗中研究了pH、硫化亞鐵、過氧化氫、硝基苯濃度及還原時間對於反應的影響,並探討了直接氧化的中間產物生成路徑及先還原後氧化的操作條件。
直接還原結果顯示硫化亞鐵具有調節pH值的能力,初始pH值不影響硫化亞鐵對硝基苯的還原效率;提高起始硝基苯濃度會降低還原效率;整體還原過程TOC無明顯變化,硝基苯並沒有得到徹底的降解。直接氧化結果顯示降低pH值略有利於氧化的進行,但總體區別不明顯;提高硫化亞鐵投加量能夠加速反應,增加幅度隨投加量的增加而降低;增加過氧化氫濃度可以加速反應並提高TOC的去除率,但是反應速度增幅遠低於過氧化氫濃度的增幅。中間產物分析表明氧化的主要中間產物為2-硝基酚、3-硝基酚、4-硝基酚及酚,其中2-硝基酚是最主要的中間產物。在先還原後氧化實驗結果表明還原不同時間(6-24小時)對後續氧化無明顯影響;與直接氧化相比較,先還原后氧化可以明顯提高TOC的去除率,礦化效果更好,並且隨著初始硫化亞鐵量和硝基苯濃度的增加而增加。通過本研究可知,無論採用還原法、氧化法或者先還原後氧化法,硫化亞鐵都可以有效處理硝基苯污染的水源水,其中先還原後氧化方法不但反應速率快,硝基苯降解也更徹底,具有很好的應用前景,解決硝基苯污染問題提供了新的解決方案。
Nitrobenzene (NB) is an important organic compound used in industrial processes. Due to its property, the chemical is resistant to oxidation and biological treatment. In this study, ferrous sulfide (FeS) is proposed to reduce NB and to trigger hydrogen peroxide based advanced oxidation. Experimental parameters considered in this study include pH, dosages of ferrous sulfide and H2O2, nitrobenzene concentration and reaction time. Experimental results show that initial pH has little effect on NB reaction efficiency with final pH maintained at around 4 and little TOC removal. Increase of NB concentration may decrease the reduction rate. For catalytic oxidation of NB, removal rate did not change much in most pH range but increased with increasing FeS dosage of from 0.1 to 1.0 g/L. However, at higher FeS dosage, the effect of FeS dosage on NB degradation rate became very minor. When H2O2 dosage increased from 0.64 to 6.4 mM, NB removal rate increased by 3.6 times. The major intermediates for NB oxidation are found to be 2-nitrophenol, 3-nitrophenol, 4-nitrophenol and phenol. In the combined process of reduction followed by oxidation, longer reduction time did not increase the removal rate of NB but may increase TOC removal rate. For reduction time of 1 hour and FeS dosages of 0.1 to 0.6 g/L, the combined processed showed better NB removal compared to that of direct oxidation.
Agency for toxic substances and disease registry., A. nitrobenzene (1999)
Agrawal, Abinash, Tratnyek and G, P. Reduction of nitro aromatic compounds by zero-valent iron metal. Environmental Science & Technology 30(1). 153-160. (1995)
Andreozzi, R., Caprio, V., Insola, A. and Marotta, R. Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today 53(1). 51-59. (1999)
Ariel. For survival in a world of expanding chemical regulations. (2006)
Bell, L., Devlin, J., Gillham, R. and Binning, P.J. A sequential zero valent iron and aerobic biodegradation treatment system for nitrobenzene. Journal of Contaminant Hydrology 66(3). 201-217. (2003)
Bigda, R.J. Consider Fenton`s chemistry for wastewater treatment. Chemical Engineering Progress. (1995)
Bob, M.M., Brooks, M.C., Mravik, S.C. and Wood, A.L. A modified light transmission visualization method for DNAPL saturation measurements in 2-D models. Advances in Water Resources 31(5). 727-742. (2008)
Buckley, A.W., R. The surface oxidation of pyrite. Applied Surface Science 27(4). 437-452. (1987)
Burnett, J.F. and Zahler, R.E. Aromatic Nucleophilic Substitution Reactions. Chemical reviews 49(2). 273-412. (1951)
Carlos, L., Fabbri, D., Capparelli, A.L., Prevot, A.B., Pramauro, E. and Einschlag, F.S.G. Intermediate distributions and primary yields of phenolic products in nitrobenzene degradation by Fenton’s reagent. Chemosphere 72(6). 952-958. (2008)
Carlos, L., Nichela, D., Triszcz, J.M., Felice, J.I. and García Einschlag, F.S. Nitration of nitrobenzene in Fenton’s processes. Chemosphere 80(3). 340-345. (2010)
Chen, B., Yang, C. and GOH, N.K. Direct photolysis of nitroaromatic compounds in aqueous solutions. Journal of Environmental Sciences 17(4). 598-604. (2005)
Ersoy, B. and Celik, M. Uptake of aniline and nitrobenzene from aqueous solution by organo‐Zeolite. Environmental technology 25(3). 341-348. (2004)
Fenton, H.J.H. Oxidation of tartaric acid in presence of iron. Journal of the Chemical Society, Transactions 65(0). 899-910. (1894)
Fu, F., Dionysiou, D.D. and Liu, H. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. Journal of Hazardous Materials 267(0). 194-205. (2014)
Gao, J.L., Linghua Liu, Xiaoru Zhou, Huaidong Wang, Zijian Huang, Shengbiao. Concentration level and geographical distribution of nitrobenzene in Chinese surface waters. Journal of Environmental Sciences 20(7). 803-805. (2008)
Guertin, J. Overview of Cleanup Design Options and Treatability Testing for In Situ Remediation of Soil and Ground Water. (2009)
Han, Y.-S., Gallegos, T.J., Demond, A.H. and Hayes, K.F. FeS-coated sand for removal of arsenic (III) under anaerobic conditions in permeable reactive barriers. Water Research 45(2). 593-604. (2011)
Henderson, A.D. and Demond, A.H. Permeability of iron sulfide (FeS)-based materials for groundwater remediation. Water Research 47(3). 1267-1276. (2013)
Huang, K.-C., Couttenye, R.A. and Hoag, G.E. Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether(MTBE). Chemosphere 49. 413-420. (2002)
Kang, Y.W. and Hwang, K.-Y. Effects of reaction conditions on the oxidation efficiency in the Fenton process. Water Research 34(10). 2786-2790. (2000)
Kelly, K.L., Marley, M. C., and Sperry, K. L. In-situ chemical oxidation on MTBE. ASCE International Conference on Environmental Engeering. (2002)
Kielb, C.L., Pantea, C.I., Gensburg, L.J., Jansing, R.L., Hwang, S.-A., Stark, A.D. and Fitzgerald, E.F. Concentrations of selected organochlorines and chlorobenzenes in the serum of former Love Canal residents, Niagara Falls, New York. Environmental research 110(3). 220-225. (2010)
Kwon, B.G., Lee, D.S., Kang, N. and Yoon, J. Characteristics of p-chlorophenol oxidation by Fenton's reagent. Water Research 33(9). 2110-2118. (1999)
Legrini, E.O.A.M.B. Photochemical Processes for Water Treatment. (1992)
Li, C.W.Y.F.S.Z.B.-L. A dynamic contaminant fate model of organic compound: A case study of Nitrobenzene pollution in Songhua River, China. (2012)
Li, Q.-R., Gu, C.-Z., Di, Y., Yin, H. and Zhang, J.-Y. Photodegradation of nitrobenzene using 172nm excimer UV lamp. Journal of Hazardous Materials 133(1). 68-74. (2006)
Lipczynska-Kochany, E. Degradation of aqueous nitrophenols and nitrobenzene by means of the Fenton reaction. Chemosphere 22(5). 529-536. (1991)
Liu, J., Valsaraj, K.T., Devai, I. and DeLaune, R. Immobilization of aqueous Hg (II) by mackinawite (FeS). Journal of Hazardous Materials 157(2). 432-440. (2008)
Loos, R., Locoro, G., Comero, S., Contini, S., Schwesig, D., Werres, F., Balsaa, P., Gans, O., Weiss, S. and Blaha, L. Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water. Water Research 44(14). 4115-4126. (2010)
Luan, F., Xie, L., Sheng, J., Li, J., Zhou, Q. and Zhai, G. Reduction of nitrobenzene by steel convert slag with Fe (II) system: The role of calcium in steel slag. Journal of Hazardous Materials 217. 416-421. (2012)
Mackay, D.M. and Cherry, J.A. Groundwater contamination: Pump-and-treat remediation. Environmental Science & Technology 23(6). 630-636. (1989)
Majumder, P.S.G.S. Hybrid reactor for priority pollutant nitrobenzene removal. Water Research 37(18). 4331-4336. (2003)
Moroizumi, T. and Sasaki, Y. Estimating the nonaqueous-phase liquid content in saturated sandy soil using amplitude domain reflectometry. Soil Science Society of America Journal 72(6). 1520-1526. (2008)
Mu, Y., Yu, H.-Q., Zheng, J.-C., Zhang, S.-J. and Sheng, G.-P. Reductive degradation of nitrobenzene in aqueous solution by zero-valent iron. Chemosphere 54(7). 789-794. (2004)
O’Carroll, D., Sleep, B., Krol, M., Boparai, H. and Kocur, C. Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Advances in Water Resources 51(0). 104-122. (2013a)
O’Carroll, D., Sleep, B., Krol, M., Boparai, H. and Kocur, C. Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Advances in Water Resources 51. 104-122. (2013b)
Otomo, M. The spectrophotometric determination of titanium with hydrogen peroxide and xylenol orange. Bulletin of the Chemical Society of Japan 36(10). 1341-1346. (1963)
Peyton, G.R. The free-radical chemistry of persulfate-based total organic carbon analyzers. Marine Chemistry 41(1). 91-103. (1993)
Poulton, S.W., Krom, M.D. and Raiswell, R. A revised scheme for the reactivity of iron (oxyhydr) oxide minerals towards dissolved sulfide. Geochimica et Cosmochimica Acta 68(18). 3703-3715. (2004)
Richard, G.P.F.Z. Influence of algae on photolysis rates of chemicals in water. Environmental Science & Technology 17(8). 462-468. (1983)
Rickard, D. and Luther, G.W. Chemistry of iron sulfides. Chemical reviews 107(2). 514-562. (2007)
Rodríguez, M. Fenton and UV-vis based advanced oxidation processes in wastewater treatment: Degradation, mineralization and biodegradability enhancement. Universitat de Barcelona. (2003)
Safarzadeh-Amiri, A., Bolton, J.R. and Cater, S.R. The use of iron in advanced oxidation processes. Journal of Advanced Oxidation Technologies 1. 18-26. (1996)
Schroth, M.H., Oostrom, M., Wietsma, T.W. and Istok, J.D. In-situ oxidation of trichloroethene by permanganate: effects on porous medium hydraulic properties. Journal of Contaminant Hydrology 50(1). 79-98. (2001)
Tang, W.Z. and Chen, R.Z. Decolorization kinetics and mechanisms of commercial dyes by iron powder system. Chemosphere 32(5). 947-958. (1996)
Tantak, N.P. and Chaudhari, S. Degradation of azo dyes by sequential Fenton's oxidation and aerobic biological treatment. Journal of Hazardous Materials 136(3). 698-705. (2006)
USEPA. Ground Water Contamination. http://www.epa.gov/. (1991)
USEPA. OPPT Chemical Fact Sheets-Nitrobenzene. http://www.epa.gov/chemfact/. (1995)
USEPA. METHOD 8330A-Nitroaromatics and Nitramines by high performance liquid chromatography(HPLC). http://www.epa.gov/. (2007).
USEPA. Toxicological review od nitrobenzene. http://www.epa.gov/iris/. (2009)
Villacañas, F., Pereira, M.F.R., Órfão, J.J.M. and Figueiredo, J.L. Adsorption of simple aromatic compounds on activated carbons. Journal of Colloid and Interface Science 293(1). 128-136. (2006)
Waduge, W., Soga, K. and Kawabata, J. Effect of NAPL entrapment conditions on air sparging remediation efficiency. Journal of Hazardous Materials 110(1). 173-183. (2004)
Weast, R.C., Astle, M.J. and Beyer, W.H. CRC handbook of chemistry and physics. CRC press Boca Raton, FL. (1988)
Weimin, W., Yongnian, Y. and Jiayu, Z. Selective reduction of nitrobenzene to nitrosobenzene over different kinds of trimanganese tetroxide catalysts. Applied Catalysis A:General 133. 81-93. (1995)
Wells, C.F. and Salam, M.A. Complex formation between iron(II) and inorganic anions. Part II. The effect of oxyanions on the reaction of iron(II) with hydrogen peroxide. Journal of the Chemical Society A: Inorganic, Physical, Theoretical (0). 308-315. (1968)
WHO, W.H.O. Nitrobenzene in drinking-water: background document for development of WHO guidelines for drinking-water quality. (2009)
Widdowson, M.A. Modeling natural attenuation of chlorinated ethenes under spatially varying redox conditions. Biodegradation 15(6). 435-451. (2004)
Yang, H.M.-c.Y.S.X.-r.L.Z.-f. Distribution patterns of nitrobenzenes and polychlorinated biphenyls in water, suspended particulate matter and sediment from mid- and down-stream of the Yellow River (China). (2006)
Yin, W.Z., Wu, J.H., Li, P., Wang, X.D., Zhu, N.W., Wu, P.X. and Yang, B. Experimental study of zero-valent iron induced nitrobenzene reduction in groundwater: The effects of pH, iron dosage, oxygen and common dissolved anions. Chemical Engineering Journal 184. 198-204. (2012)
Zhang, Y., Zhang, K., Dai, C. and Zhou, X. Performance and mechanism of pyrite for nitrobenzene removal in aqueous solution. Chemical Engineering Science 111(0). 135-141. (2014a)
Zhang, Y., Zhang, K., Dai, C., Zhou, X. and Si, H. An enhanced Fenton reaction catalyzed by natural heterogeneous pyrite for nitrobenzene degradation in an aqueous solution. Chemical Engineering Journal 244. 438-445. (2014b)
行政院環境保護署. 地下水污染監測基準及管制標準(草案). http://www.epa.gov.tw/index.aspx. (2001)
行政院環境保護署. 土染汙染管制標準第五條修正草案. http://www.epa.gov.tw/. (2012a)
行政院環境保護署. 物質安全資料表-硝基苯. http://www.epa.gov.tw/index.aspx. (2012b)
行政院環境保護署. 物質安全資料表-苯胺. http://www.epa.gov.tw/index.aspx. (2012b)
行政院環境保護署. 物質安全資料表-硝基苯. http://www.epa.gov.tw/index.aspx. (2012c)
李梅, 姜.石.崔. 3種典型污染物對水生生物的急性毒性效應及其水質基準比較. (2014)
邱南殼. 現地化學還原法整治技術及案例介紹. (2008)
邱魯軍, 呂.馬. 地下水油類污染系統形成機制研究-以某石油化工研究區為例. 煤田地質與勘探,第6期,第33卷,第38-41頁. (2005)
范竣程. 以芬頓流體化床程序降解鄰-甲苯胺. 嘉南藥理科技大學環境工程與科學研究所 碩士論文. (2010)
高志明, 梁.郭.連.簡. 地下水污染之整治技術介紹. 『環保資訊』月刊第170期. (2012)
高志明, 陳. 土壤及地下水物理/化學復育技術. (2002)
梁振儒. 淺談土壤及地下水污染現地過硫酸鹽化學氧化整治法. 台灣土壤及地下水環境保護協會簡訊. (2007)
郭育嘉. 以釋氧化劑物質處理受石油碳氫化合物污染之地下水. 國立中山大學 環境工程研究所 碩士論文. (2009)
經濟部工業局. 含氯碳氫化合物-土壤及地下水污染預防與整治技術手冊. 經濟部工業局. (2008)