簡易檢索 / 詳目顯示

研究生: 張益新
Chang, Yee-Shin
論文名稱: 鈦鐵礦結構Zn1-xAxTi1-yByO3 之合成及性質研究
Synthesis and Investigations of Ilmenite Structure Zn1-xAxTi1-yByO3
指導教授: 張炎輝
Chang, Yen- Hwei
陳引幹
Chen, In-Gann
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 151
中文關鍵詞: 介電固態反應溶膠凝膠鈦酸鋅鈦鐵礦電性
外文關鍵詞: electrical properties, dielectric properties, solid state reaction, sol gel, zinc titanate, ilmenite
相關次數: 點閱:87下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究是以鈦鐵礦結構之鈦酸鋅(ZnTiO3)材料為探討對象,以等價數之Mg,Zr離子分別取代部分Zn與Ti離子,製備成(Zn1-xMgx)TiO3及Zn(ZrxTi1-x)O3多功能之陶瓷材料。本研究主要由四部份所構成: (1) 以溶膠-凝膠製程製備ZnTiO3粉末;(2) 以固態反應法合成ZnTiO3粉末;(3) 以固態反應法合成(Zn,Mg)TiO3及其性質研究;(4) 以固態反應法合成Zn(Ti,Zr)O3及其性質研究。
      實驗結果顯示,以溶膠-凝膠製程製備之ZnTiO3粉末,前導物在煆燒分解過程當中,可分為四個步驟,分別為脫水反應、分解反應、燃燒(或氧化反應)與ZnTiO3相之生成反應。其結晶溫度約為510℃,最佳煆燒條件為800℃,10個小時。表面型態均為顆粒狀,顆粒很容易為降低表面能結合在一起而形成結團。但當煆燒溫度大於其分解溫度,則表面型態轉變為纖維狀。ZnTiO3結晶活化能約為160.50 kJ/mol,晶粒成長活化能約為16.36 kJ/mol。
      以固態反應法合成ZnTiO3粉末,其結晶溫度約為820℃,因具有較大之粉末顆粒,其表面能減少而無法有效的降低其結晶活化能。其結晶活化能約等於308.66 kJ/mol,晶粒成長活化能約等於23.94 kJ/mol。最佳最佳煆燒條件為800℃,24小時,過高的溫度則造成結晶性下降。另外ZnTiO3於居理溫度以上具有PTCR效應,其居理溫度約等於5℃。
      添加不同含量的MgO與ZrO2,因Mg2+與Zr4+離子取代的位置 不同而造成ZnTiO3表現出不同的特性。Mg2+離子可取代Zn2+離子,而形成(Zn1-xMgx)TiO3固溶體,其溶解極限值約等於10 at.%。 Mg2+離子的添加可以有效的增加ZnTiO3之熱穩定性,添加10 at.%的Mg,其熱穩定溫度約可以增加100℃。Mg的添加有細化ZnTiO3晶粒及增加ZnTiO3燒結緻密化程度的效果。(Zn1-xMgx)TiO3的介電常數與居理溫度均隨Mg含量的增加而增加。在900℃下燒結24小時之(Zn0.9Mg0.1)TiO3在共振頻率約8 GHz具有最佳的品質因子。而溫度係數隨著Mg含量的增加而愈接近於0。(Zn1-xMgx)TiO3試片具有PTCR特性。
      Zr4+離子亦可以取代Ti4+離子,而形成Zn(Ti1-xZrx)O3固溶體。但其溶解極限值約等於5 at.%。Zr的添加亦可以有效的增加ZnTiO3之熱穩定性,添加10 at.%的Zr,其熱穩定溫度約可以增加45℃。與添加Mg一樣,Zr的添加有細化ZnTiO3晶粒的效果,但ZnTiO3的燒結緻密化程度卻因Zr的添加而減低。Zn(Ti,Zr)O3試片仍具有PTCR特性,Zn(Ti1-xZrx)O3之介電常數,消散因子均隨Zr含量的增加而減小。

      The present investigation has been focused on the ZnTiO3, which has an ilmenite structure. The ZnTiO3 powders doped with Mg and Zr ions resulting (Zn,Mg)TiO3 and Zn(Ti,Zr)O3 multi-functional ceramics were synthesized. The experimentation consists of four parts, as ZnTiO3 powders preparation using sol-gel method, ZnTiO3 powders preparation by solid state reaction, synthesis and characterization of (Zn,Mg)TiO3 and synthesis and characterization of Zn(Ti,Zr)O3.
      Experimental results show that the decomposition of the precursor proceeded through four major steps including dehydration reaction, decomposition, combustion reaction and ZnTiO3 phase formation. The ZnTiO3 phase was formed initially at 510℃and the optimum condition for ZnTiO3 powders is calcined at 800℃ for 10 h. The shape of grains will be changed from granular to fiber as the calcination temperature increasing from 800 to 1000℃. The activation energy of crystallization and grain growth for ZnTiO3 is ~ 160.50 kJ/mol and ~ 16.36 kJ/mol, respectively.
      For solid state reaction, the crystallization temperature of ZnTiO3 powder was ~ 820℃, activation energy for crystallization was ~ 308.66 kJ/mol and ~ 23.94 kJ/mol for grain growth. In addition, ZnTiO3 is a V-type resistivity-temperature characteristics and possesses a typical PTCR properties above the Curie temperature (TC ~ 5℃).
      For ZnTiO3 doped with MgO, the results revealed that Mg can replace the zinc ion and forms a solid solution in ZnTiO3 phase. The electrical resistivities of (Zn1-xMgx)TiO3 varied with sintering temperature, a minimum when sintered at 900℃ were obtained. Increasing amounts of Mg will also decrease the resistivity. A V-shaped temperature dependence of resistivity was observed. Furthermore, the dielectric constant increased with sintering temperature and decreased with increasing amounts of magnesium. It also shows a maximum Q factor (~1700) at a frequency of 8 GHz for the sample of (Zn0.9Mg0.1)TiO3 sintered at 900℃.
    For ZnTiO3 doped with ZrO2, the results indicated that the phase stable region of the hexagonal Zn(Ti1-xZrx)O3 extended to higher temperature. The surface morphologies, densities and dielectric properties exhibited a significant dependence on the sintering temperature and the amounts of additions. It reveals that higher amount of Zr addition favors to inhibit the grain growth of matrix. There are severely decreases in densities but increases in dielectric constants for Zr doped samples that sintered at the temperature higher than 900℃. The dielectric constant decreased and Curie temperature (Tc) increased slightly with increasing the amounts of Zr ions. Furthermore, the diffuse phase transition in Zn(Ti1-xZrx)O3 was observed.

    第一章 緒論……………………………………………………………… 1 1-1. 前言……………………………………………………………… 1 1-1-1. 鈦鐵礦(Ilmenite)結構…………………………………… 1 1-1-2. ZnO-TiO2 System………………………………………… 1 1-2. 研究動機………………………………………………………… 3 1-3. 研究目的………………………………………………………… 4 第二章 理論基礎 .…………………………………………………… 9 2-1. 溶膠-凝膠法(Sol-gel Method)……………………………… 9 2-1-1. 溶膠-凝膠製程…………………………………………… 9 2-1-2. 溶膠-凝膠製程之原理…………………………………… 10 2-1-3. Pechini Process………………………………………… 11 2-1-4. 溶膠-凝膠製程之優缺點……………………………………13 2-2. 固態反應法(Solid State Reaction)………………………… 13 2-2-1. 固態反應機構……………………………………………… 13 2-2-1. 固態反應法之優缺點……………………………………… 14 2-3. 固態燒結過程及理論…………………………………………… 14 2-3-1. 燒結的基本原理及機構…………………………………… 14 2-3-2. 幾何形狀的考量…………………………………………… 15 2-3-3. 粉末顆粒大小分布對燒結行為及顯微結構的影響……… 16 2-4. 晶粒成長(Grain Growth)……………………………………… 16 2-4-1. 晶粒成長的發生及驅動力………………………………… 17 2-4-2. 晶粒成長的類型…………………………………………… 17 2-4-3. 在緻密固體中正常晶粒成長之模式……………………… 17 2-5. 介電理論(Dielectric Theory)…………………………………19 2-5-1. 介電性質…………………………………………………… 19 2-5-2. 極化之機構………………………………………………… 19 2-5-3. 擴散性相變(Diffusion Phase Transition)…………… 20 2-5-4. 微波介電性………………………………………………… 21 2-6. 正溫度係數(Positive Temperature Coefficient of Resistivity, PTCR)特性……………………………………………………………………… 23 2-6-1. PTCR理論…………………………………………………… 23 2-6-2. PTCR特性…………………………………………………… 23 2-6-3. PTCR理論模型……………………………………………… 24 2-7. 晶界吸附氣體時之能障模型…………………………………… 27 第三章 實驗方法 …………………………………………………… 39 3-1. 實驗方法………………………………………………………… 39 3-1-1. 溶膠-凝膠製程…………………………………………… 39 3-1-2. 固態反應法………………………………………………… 39 3-1-3. 塊材之製備………………………………………………… 40 3-2. 成分與結構分析………………………………………………… 40 3-2-1. 晶粒大小…………………………………………………… 40 3-2-2. X光繞射(XRD)分析………………………………………… 40 3-2-3. 掃描式電子顯微鏡(SEM)分析…………………………… 41 3-2-4. 穿透式電子顯微鏡(TEM)分析…………………………… 41 3-2-5. 原子力顯微鏡(AFM)分析………………………………… 41 3-2-6. 熱差/熱重(DTA /TGA)及示差掃描(DSC)熱量分析……… 42 3-2-9. 傅立葉轉換紅外線光譜分析(FT-IR)…………………… 42 3-3. 性質量測………………………………………………………… 42 3-3-1. 介電性質(Dielectric Properties)量測……………… 42 3-3-2. 電阻率的量測……………………………………………… 43 3-3-3. 孔隙率、密度量測………………………………………… 43 3-3-4. 微波介電(Microwave Dielectric)性質的量測………… 44 第四章 結果與討論…………………………………………………… 51 4-1. 以溶膠-凝膠法製備之ZnTiO3………………………………… 51 4-1-1. 熱差-熱重(DTA/TGA)分析………………………………… 51 4-1-2. 示差掃描(DSC)分析……………………………………… 52 4-1-3. X光繞射(XRD)分析………………………………………… 52 4-1-4. 晶粒大小及晶粒成長活化能……………………………… 53 4-1-5. 結晶性(Crystallinity)之計算………………………… 54 4-1-6. 傅立葉轉換紅外線光譜(FT-IR)分析…………………… 55 4-1-7. 掃描式電子顯微鏡(SEM)分析…………………………… 56 4-1-8. 穿透式電子顯微鏡(TEM)分析…………………………… 57 4-1-9. 結論……………………………………………………… 57 4-2. 以固態反應法製備之ZnTiO3粉末…………………………… 72 4-2-1. 示差掃描(DSC)分析……………………………………… 72 4-2-2. X光繞射(XRD)分析………………………………………… 72 4-2-3. 晶粒大小及晶粒成長活化能……………………………… 73 4-2-4. 掃描式電子顯微鏡(SEM)分析…………………………… 74 4-2-5. 穿透式電子顯微鏡(TEM)分析…………………………… 74 4-2-6. ZnTiO3塊材之XRD分析…………………………………… 75 4-2-7. ZnTiO3塊材之SEM分析…………………………………… 75 4-2-8. 介電性質(Dielectric Properties)的量測…………… 75 4-2-9. 電性(Electrical Properties)量測…………………… 76 4-2-10. 結論………………………………………………………… 76 4-3. 以固態反應法製備之(Zn1-xMgx)TiO3………………………… 89 4-3-1. X光繞射(XRD)分析………………………………………… 89 4-3-2. 熱穩定性(Thermal Stability)分析…………………… 90 4-3-3. 掃描式電子顯微鏡(SEM)分析…………………………… 90 4-3-4. 介電性質(Dielectric Properties)的量測…………… 92 4-3-5. 電性(Electrical Properties)量測…………………… 93 4-3-6. 穿透式電子顯微鏡(TEM)分析…………………………… 95 4-3-7. 結論……………………………………………………… 96 4-4. 以固態反應法製備之Zn(ZrxTi1-x)O3……………………… 115 4-4-1. X光繞射(XRD)分析……………………………………… 115 4-4-2. 熱穩定性(Thermal Stability)分析…………………… 116 4-4-3. 掃描式電子顯微鏡(SEM)分析…………………………… 116 4-4-4. 介電性質(Dielectric Properties)的量測…………… 117 4-4-5. 電性(Electrical Properties)量測…………………… 120 4-4-6. 結論 ………………………………………………… 120 4-5. 綜合討論............................................ 136 4-5-1. 添加不同金屬離子對ZnTiO3電性之影響………………… 136 4-5-2. 添加不同金屬離子對ZnTiO3介電性質之影響…………… 136 第五章 結論………………………………………………………… 139 參考文獻……………………………………………………………… 141 自述

    [1] Y. M. Chiang, Birnie Ⅲ, Dunbar P. and David Kingery, W., "Physical Ceramics: Principles for Ceramics Science and Engineering" John Wiley & Sons, Inc., New York, 1997, p.34
    [2] L. Levy, "Chimie Minérale-Sur les titanates de zinc particulierement sur un trititanate" Compt. Rend. 105 (1887) 378; "Chimie-Sur quatre nouveaux titanate de zinc" ibid. 107 (1888) 421
    [3] L. Levy, Ann Chim, Phys. 25 [6] (1892) 433
    [4] F. H. Dulin and D. E. Rase, "Phase Equilibria in the System ZnO-TiO2" J. Am. Ceram. Soc. 43 (1960) 125
    [5] S. S. Cole and W. K. Nelson, "System Zinc Oxide-Titanium Dioxide; Zinc Orthotitanate and Solid Solution with Titanium Dioxide" J. Phys. Chem. 42 [2] (1938) 245
    [6] N. W. Taylor, "Crystal Structure of Compounds Zn2TiO4, Zn2SnO4, Ni2SiO4 and NiTiO3" Z. Phys. Chem. B9 [4] (1930) 241
    [7] L. Passerini, "Spinel:Ⅲ, Cobalt and Zinc Titanates" Gazz. Chim. Ital. 60 [12] (1930) 957
    [8] S. Holgersson and A. Herrlin, "X-Ray Studies on Orthotitanates" Z. Anorg. U. Allgem. Chem. 198 [1] (1931) 69
    [9] S. F. Bartram and R. A. Slepetys, "Compound formation and crystal structure in the system ZnO-TiO2" J. Am. Ceram. Soc. 44 (1961) 493
    [10] A. I. Sheinkman, F. P. Sheinkman, I. P. Dobrovol’skii and G. R. Zvyagina, "Phase formation sequence in the reaction of zinc oxide with titanium dioxide" Izv. Akad. Nauk SSSR Neorg. Mater. 13 (1977) 1447
    [11] V. B. Reddy, S. P. Goel and P. N. Mehrotra, "Investigation on formation of zinc titanate via thermal decomposition of zinc titanyl oxalate hydrate" Mater. Chem. Phys. 10 (1984) 365
    [12] O. M. Yamaguchi, M. Morimi, H. Kawabata and K. Shimizu, "Formation and transformation of ZnTiO3" J. Am. Ceram. Soc. 70 (1987) c97
    [13] M. Ocana, W. P. Hsu and E. Matijevic, "Preparation and properties of uniform-coated colloidal particle, 6: titania on zinc oxide" Lngmuir 7 (1991) 2911
    [14] R. K. Datta, "Composition modification and characterization of ZnO-TiO2 based (ZTB) desulfurization sorbent" Final Report, Contract No. DE-AP21-93MC53415, USDOE/METC, Morgantown, WV, 1993
    [15] J. H. Sohn, Y. Inaguma, S. O. Yoon, M. Itoh, T. Nakamura, S. J. Yoon and H. J. Kim, "Microwave Dielectric Characteristics of Ilmenite-Type Titanates with High Q Values" Jpn. J. Appl. Phys. 33 (1994) 5466
    [16] H. T. Kim, S. H. Kim, S. Nahm and J. D. Byum, "Low-Temperature Sintering and Microwave Dielectric Properties of Zinc Metatitanate-Rutile Mixtures Using Boron" J. Am. Ceram. Soc. 82 [11] (1999) 3043
    [17] H. T. Kim, S. Nahm and J. D. Byun, "Low-Fired (Zn,Mg)TiO3 Microwave Dielectrics" J. Am. Ceram. Soc. 82 [12] (1999) 3476
    [18] H. T. Kim, J. D. Byun and Y. Kim, "Microstructure and Microwave Dielectric Properties of Modified Zinc Titanate (Ⅰ)" Mater. Res. Bull. 33 [6] (1998) 963
    [19] H. T. Kim, J. D. Byun and Y. Kim, "Microstructure and Microwave Dielectric Properties of Modified Zinc Titanate (Ⅱ)" Mater. Res. Bull. 33 [6] (1998) 975
    [20] H. Obayashi, Y. Sakurai and T. Gejo, "Perovskite-Type Oxide as Ethanol Sensors" J. Solid State Chem. 17 (1976) 299
    [21] S. Lew, A. F. Sarofim, M. F. Stephanopoulos, "Sulfidation of zinc titanate and zinc oxide solids ", Ind. Eng. Chem. Res.31 (1992) 1890
    [22] S. Lew, K. Jothimurugesan, M. F. Stephanopoulos, "High temperature H2S removal from fuel gases by regenerable zinc oxide-titanium dioxide sorbents" Ind. Eng. Chem. Res. 28 (1989) 535
    [23] H. K. Jun, T. J. Lee, S. O. Ryu and J. C. Kim, "A Study of Zn-Ti Based H2S Removal Sorbents Promoted with Cobalt Oxides" Ind. Eng. Chem. Res. 40 (2001) 3547
    [24] A. T. McCord and H. F. Saunders, "Preparation of Pigmentary Materials" U. S. Pat. 2,739,019, June 26, (1945) Ceram. Abstr. 24 [8] (1945) 155
    [25] M. Sugiura and K. Ikeda, "Studies on Dielectric of the TiO2-ZnO System" J. Jpn. Ceram. Assoc. 55 [626] (1947) 62
    [26] K. Haga, T. Ishii, J. Mashiyama and T. Ikeda,"Dielectric Properties of Two-Phase Mixtures Ceramics Composed of Rutile and Its Compounds" Jpn. J. Appl. Phys. 31 (1992) 3156
    [27] M. Wang, J. Zhou, Z. Yue, L. Li and Z. Gui, "Co-firing behavior of ZnTiO3-TiO2 dielectric/hexagonal ferrite composites for multi-layer LC filters" Mater. Sci. Eng. B 99 (2003) 262
    [28] S. F. Wang, M. K. Lü, F. Gu, C. F. Song, D. Xu, D. R. Yuan, S. W. Liu, G. J. Zhou and Y. X. Qi, "Photoluminescence characteristics of Pb2+ ion in sol-gel derived ZnTiO3 nanocrystals" Inorganic Chem. Communications 6 (2003) 185
    [29] S. F. Wang, F. Gu, M. K. Lü, C. F. Song, D. Xu, D. R. Yuan and S. W. Liu, "Photoluminescence of sol-gel derived ZnTiO3:Ni2+ nanocrystals" Chem. Phys. Lett. 373 (2003) 223
    [30] K. A. Berry and M. P. Harmer, "Effect of MgO Solute on the Microstructure Development in Al2O3" J. Am. Ceram. Soc. 69 [2] (1986) 143
    [31] S. J. Bennison and M. P. Harmer, "Effect of MgO Solute on the Kinetics of Grain Growth in Al2O3" J. Am. Ceram. Soc. 66 [5] (1983) C90
    [32] R. Majumdar, E. Gilbart and R. J. Brook, "Kinetic of Densificeation of Alumina-Zirconia Ceramics" Br. Ceram. Trans. J. 85 (1986) 156
    [33] S. G. Lee and D. S. Kang, "Dielectric properties of ZrO2-doped (Ba,Sr,Ca)TiO3 ceramics for tunable microwave device application" Mater. Lett. 57 (2003) 1629
    [34] M. Glerup, O. F. Nielsen and F. W. Poulsen, "The Structural Transformation from the Pyrochlore Structure, A2B2O7, to the Fluorite Structure, AO2, Studied by Raman Spectroscopy and Defect Chemistry Modeling" J. Solid. State Chem. 160 (2001) 25
    [35] C. J. Brinker and G. W. Scherer, "Sol-Gel Science" Academic Press, New York, 1990, p.839
    [36] H. Dislich, C. Angew, Int. Ed. Engl. 10 (1971) 363
    [37] 蔡印來,"鈣鈦礦結構之La1-ySryCo1-x(Cu/Ni)xO3-δ薄膜對一氧化碳氣體感測特性之研究",國立成功大學資源工程博士論文,2001
    [38] 蔡政達,"利用FT-IR和13C-NMR光譜探討檸檬酸製程合成鈦酸鋇陶瓷粉末之研究",國立成功大學材料科學及工程博士論文,1998
    [39] 陳慧英,"溶膠凝膠法在薄膜製備上之應用",化工技術,無機薄膜之製備與應用專輯,11月號,80期,1999
    [40] J. Livage and C. Sanchez, "Sol-Gel Chemistry" J. Non-Cryst. Solids 145 (1992) 11
    [41] M. Kakihana, "Sol-Gel Preparation of High Temperature Superconducting Oxides" J. Sol-Gel Sci. Tech. 6 (1996) 7
    [42] L. W. Tai and P. A. Lessing, "Modified Resin-Intermediate Processing of Perovskite Powders: Part ⅠOptimization of Polymeric Precursors" J. Mater. Res. 7-2 (1992) 502
    [43] L. W. Tai and P. A. Lessing, "Modified Resin-Intermediate Processing of Perovskite Powders: Part ⅡProcessing for Fine, Nonagglomerated Sr-doped Lanthanum Chromite Powders" J. Mater. Res. 7 [2] (1992) 511
    [44] M. Gugliemi and G. Carturan, "Precursor for Sol-Gel Preparations" J. Non-Crystalline Solids 100 (1988) 16
    [45] H. Schmidt, "Chemistry of Material Preparation by the Sol-Gel Process" J. Non-Crystalline Solids 100 (1988) 51
    [46] M. P. Pechini, U. S. Pat. No.3 231 328, (1966)
    [47] D. Hennings and W. Mayr, "Thermal Decomposition of (BaTi) Citrates into Barium Titanate" J. Solid State Chem. 26 (1978) 329
    [48] M. P. Pechini, U. S. Patent No. 3,330,697 (1967)
    [49] W. Jander, "Reaktionen im Festen Zustande bie Hoheren Temperaturen" Z. Anorg. Allg. Chem. (in Ger) 163 (1927) 1
    [50] A. M. Ginstling and B. I. Brounshtein, "Concerning the Diffusion Kinetics of Reactions in Spherical Particles" J. Appl. Chem. USSR, 23 (1950) 1327
    [51] G. Valensi, "Cinetique de I'Oxydation de Spherules et de Poudres Matallics" C. R. Hebd. Seances Acad. Sci. (in Fr.) 203 (1936) 309
    [52] R. E. Carter, "Kinetic Model for Solid-State Reactions" J. Chem. Phys. 34 (1961) 2010
    [53] 蕭富山,"修正型統計燒結理論評估位添加、氧化鎂及氧化鋯添加氧化鋁燒結行為及顯微結構演進",國立成功大學材料科學及工程博士論文,2000
    [54] R. L. Coble, "Sintering Crystalline Solids. Ⅰ. Intermediate and Final State Diffusion Models" J. Appl. Phys. 32 (1961) 787
    [55] C. Greskovich and J. H. Rosolowski, "Sintering of Covalent Solids" J. Am. Ceram. Soc. 59 (1976) 336
    [56] D. W. Budworth, "Theory of Pore Closure during Sintering" Trans. Brit. Ceram. Soc. 69 (1970) 29
    [57] C. Herring, "Effect of Change of Scale on Sintering Phenomena" J. Appl. Phys. 21 (1950) 301
    [58] F. F. Lang, "Sinterability of Agglomerate Powders" J. Am. Ceram. Soc. 67 (1984) 83
    [59] J. E. Burke and D. Turnbull, Prog. Metal Phys. 3 (1952) 220
    [60] W. D. Kingery, H .K. Bowen and D. R. Uhlmann, "Introduction to Ceramics" 2nd edition, John Wiley and Sons, New York, 1976, p.220
    [61] M. W. Barsoum, "Fundamental of Ceramics" The McGraw-Hill Companies, Inc. 1997, p.526
    [62] N. Setter and L. E. Cross, "The contribution of structure disorder to diffuse phase transitions in ferroelectrics" J. Mat. Sci. 15 (1980) 2478
    [63] D. Hennings, A. Schnell and G. Simon, "Diffuse Ferroelectric Phase Transitions in Ba(Ti1-yZry)O3 Ceramics" J. Am. Ceram. Soc. 65 (1982) 539
    [64] Stephen M. Neirman, "The Curie Point Temperature Of Ba(Ti1-xZrx)O3 Solid Solution" J. Mater. Sci. 23 (1988) 3973
    [65] T. Martirena, J. C. Burfoot, "Grain-size effects on properties of some ferroelectric ceramics" J. Phys. C: Solid State Phys. 7 (1974) 3182
    [66] Derek C. Sinclair, Timothy B. Adams, Finlay D. Morrison and Anthony R. West, "CaCu3Ti4O12: One-Step Internal Barrier Layer Capacitor" Appl. Phys. Lett. 80 [12] (2002) 2153
    [67] 王惠傑,"通訊用介電陶瓷材料及元件",工業材料,115期,(1996) 74。
    [68] 陳皇鈞,"陶瓷材料概論,下冊",曉園出版社,(1987) 862。
    [69] K. Wakine, "Recent Development of Dielectric Resonator Materials and Filter in Japan" Ferroelectrics 91 (1989) 69
    [70] K. Masumoto, "Ba(Mb1/3Ta1/3)O3 Ceramics with Ultra-Low Loss at Microwave Frequencies" Proc. 6th IEEE Inter. Sympo. on Appl. of Ferro. (1986) 118
    [71] 傅坤福,"微波陶瓷介電材料介電性質量測",工業材料,132期,(1997) 112。
    [72] 陳田雲,"高頻通訊元件介電材料特性量測",工業材料,115期,(1996) 92。
    [73] 林震宇,"(Ba,Sr)Sm2Ti4O12陶瓷微波介電材料之合成、分析與性質研究",國立成功大學資源工程碩士論文,1996
    [74] 林財發,"鈦酸鋇陶瓷正溫度係數電阻與介電特性之研究",國立清華大學材料科學工程博士論文,1989
    [75] B. M. Kulwicki, "PTC Materials Technology" p. 138 in Advances in Ceramics Vol. 1, Grain Boundary Phenomena in Electronic Ceramics. Edited by L. M. Levinson, The Am. Ceram. Soc., Inc Columbus, Ohio, 1981
    [76] G. H. Jonker, "Some Aspects of Semiconducting Barium Titanate" Solid State Electron. 7 (1964) 895
    [77] W. Heywang, "Barium Titanate as a Semiconductor with Blocking Layers" Solid State Electron. 3 [1] (1961) 51
    [78] D. C. Hill and H. L. Tuller, "Ceramic Sensor: Theory and Pactice" p. 328 in Ceramics Materials for Electronics. Edited by R. Buchanan, Marcel Dekker, Inc. New York and Basel, 1983
    [79] E. Andrich, "Properties and Applications of PTC Thermistors" Electr. Appl. 26 [3] (1965/66) 123
    [80] O. Saburi and K. Wakino, "Processing Techniques and Applications of Positive Temperature Coefficient Thermistors" IEEE Trans. Comp. Parts 1963
    [81] O. Saburi, "Experimental Research in Semiconducting Barium Titanate" Report of Murata Mfg. Co., Ltd., Technical Laboratory, Kyoto, Japan, June 27, 1961 (in Japanese) p. 132 Ceram. Abstr., 1962, p.202
    [82] W. Heywang, "Resistivity Anomaly in Doped Barium Titanate" J. Am. Ceram. Soc. 47 [10] (1964) 484
    [83] W. T. Peria, W. R. Bratschun and R. D. Fenity, "Possible Explanation of Positive Temperature Coefficient in Resistivity of Semiconducting Ferroelectrics" J. Am. Ceram. Soc. 44 [5] (1961) 249
    [84] J. B. MacChesney and J. F. Potter, "Factors and Mechanisms Affecting the Positive Temperature Coefficient of Resistivity of Barium Titanate" J. Am. Ceram. Soc. 48 [2] (1965) 81
    [85] J. F. McAleer, P. T. Mosely, J. O. W. Norris and D. E. Williams, "Tin dioxide gas sensors" J. Chem. Soc., Faraday Trans. 83 (1987) 1323
    [86] D. E. Williams, "Solid State Gas Sensor" ed. by P. T. Mosely and B. G. Tofield (Bristol: Hilger) (1987) 115
    [87] G. Binnig, H. Rohrer, "Scanning Tunneling Micrscopy" Surface Science 126 (1983) 235
    [88] W. DÖRR, H. ASSMANN, G. MAIER, J. STEVEN, "BESTIMMUNG DER DICHTE, OFFENEN POROSITÄT, PORENGRÖSSENVERTEILUNG UND SPEZIFISCHEN OBERFLÄCHE VON UO2-TABLETTEN" J. Nucl. Mater. 81 (1979) 135
    [89] Y. Kobayashi and M. Katoh, "Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method" IEEE Trans. on Microwave Theory and Tech. MTT-33, 7, (1985) 586
    [90] C. J. Pouchert and J. Behnke, The Aldrich Library of 13C and 1 H FT NMR Spectra, Vol.1. 1st edition, Aldrich Chemical Company, Inc., USA (1993) 814
    [91] Eype and Spottiswoode, "Dictionary of Organic Compounds" Oxford University Press, New York, 1965, p.715
    [92] 洪逸明,"鋰離子二次電池陰極材料 之合成及其電化學性質",國立成功大學材料科學及工程博士論文,2001
    [93] H. E. Kissinger, "Variation of Peak Temperature with Heating Rate in Differential Thermal Analysis" J. RES. NBS. 57 (1956) 217
    [94] W. S. Cho, "Structural Evolution and Characterization of BaTiO3 Nanoparticles Synthesized from Polymeric Precursor" J. Phys. Chem. Solids 59 [5] (1998) 659
    [95] B. C. Cullity, "Elements of X-Ray Diffraction" 2nd Edition Addison-Wesley Publishing Company, INC. 1978, p.102
    [96] R. L. Coble, "Sintering Crystalline Solids, Ⅱ. Experimental Test of Diffusion Models in Powder Compacts " J. Appl. Phys. 32 (1961) 793
    [97] M. Jarcho, C. H. Bolen, R. H. Doremus, "Hydroxyapatite synthesis and characterization in dense polycrystalline form" J. Mater. Sci. 11 (1976) 2027
    [98] N. Fujimura, T. Nishihara, S. Goto, J. Xu, T. Ito, "Control of preferred orientation for ZnOx films: Control of self-texture" J. Cryst. Growth 130 (1993) 269
    [99] K. Nakamoto, "Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th edition" John Wiley & Sons, USA (1986) 231
    [100] M. Kakihana, T. Nagumo, M. Okamoto and H. Kakihana, "Coordination Structure for Uranyl Carboxylate Complexes in Aqueous Solution Studied by IR and 13C NMR Spectra" J. Phys. Chem. 91 (1987) 6128
    [101] P. Durán, F. Capel, J. Tartaj, D. Gutierrez and C. Moure, "Heating rate on the BaTiO3 formation by thermal decomposition of metal citrate polymeric precursor" Solid State Ionics 141-142 (2001) 529
    [102] M. Rajendran and M. S. Rao, "Formation of BaTiO3 from Citrate Precursor" J. Solid State Chem. 113 (1994) 239
    [103] R. A. Nyquist and R. O. Kagel, Academic press, New York, 1997, p.78
    [104] B. G. Shabalin, "Synthesis and IR Spectra of Some Rare and New Titanium and Niobium Minerals" Mineral. Zh. 4 [5] (1982) 54
    [105] J. P. Coutures, P. Odier and C. Proust, "Barium Titanate Formation by Organic Resins Formed with Mixed Citrate" J. Mater. Sci. 27 (1992) 1849
    [106] E. R. Leite, J. A. Varela, E. Longo and C. A. Paskocimas, "Influence of Polymerization on the Synthesis of SrTiO3: Part Ⅱ. Particle and Agglomerate Morphology" Ceram. Int. 21 (1995) 153
    [107] G. A. Hutchins, G. H. Maher and S. D. Ross, "Control of the Ba:Ti Ratio of BaTiO3 at the Value of Exactly 1 via Conversion to BaO•TiO2•3C6H8O7•3H2O" Am. Ceram. Soc. Bull. 66 [4] (1987) 681
    [108] Y. Tanaka, Y. Hirata and R. Yoshinaka, "Synthesis and characteristics of ultrafine hydroxyapatite particles" J. Ceram. Proces. Res. 4 [4] (2003) 197
    [109] T. Kubo, M. Kato, M. Mitari and K. Uchida, "Solid State Reaction of the TiO2-ZnO System" Kogyo Kagaku Zasshi 66 [4] (1963) 403
    [110] Feiser, "Volatility of Oxide of Lead, Cadimum, Zinc, and Tin" Metall u. Erz. 26 (1929) 269
    [111] M. Pourbaix, "Sublimatoion of Zinc Oxide" Bull. Soc. Chim. Belg. 53 (1944) 159
    [112] C. G. Maier, "Zinc Smelting from a Chemical and Thermodynamic Viewpoint" U. S. Bur. Mines Bull. No. 324 (1930) 20
    [113] F. O. Doeltz and C. A. Graumann, Metallurgie 3 (1906) 212
    [114] M. Sugiura and K. Ikeda, "Studied on Dielectric of the TiO2-ZnO System, Ⅰ− Ⅳ" J. Jpn. Ceram. Assoc. 55 [628] (1947) 97
    [115] T. K. Gupta, "Possible Correlation between Density and Grain Size During Sintering" J. Am. Ceram. Soc. 55 [5] (1972) 276
    [116] Pampuch, "Ceramic Materials an Introduction to their Properties" Elsevier Scientific Publishing Company, New York, 1976, p. 130
    [117] J. Ravez, C. R. Acad. Sci., Paris, Ser. Ⅱc Chim. 3 (2000) 267
    [118] L. V. Alexandrov, R. Z. Valiev, "X-Ray Pattern Simulation in Textured Nanostructure Copper" Nanostructured Materials 6 (1995) 763
    [119] C. Greskovich and K. W. Lay, "Grain Growth in Very Porous Al2O3 Compacts" J. Am. Ceram. Soc. 55 [3] (1972) 142
    [120] R. L. Coble, "Sintering Crystal SolidsⅡ.Experimental Test of Diffusion Models in Porous Compacts" J. Appl. Phys. 32 (1961) 793
    [121] R. L. Coble, "Transparent Alumina and Method of Preparation" U. S. Pat. 3,026,210, March 21 (1962)
    [122] R. L. Coble and J. E. Burke, "Sintering in Ceramics" Progr. Ceram. Sci. 3 (1963) 197
    [123] P. J. Jorgensen and J. H. Westbrook, "Role of Solute Segregation at Grain Boundaries during Final-State Sintering of Alumina" J. Am. Ceram. Soc. 47 [7] (1964) 332
    [124] P. J. Jorgensen, "Modification of Sintering Kinetics by Solute Segregation in Al2O3" J. Am. Ceram. Soc. 48 [4] (1965) 207
    [125] C. A. Handwerker, Sc. D. Thesis. Massachusetts Insitute of Technology, Cambridge, MA, 1983
    [126] C. A. Handwerker, P. A. Morris and R. L. Coble, "Effect of Chemical Inhomogeneities on Grain Growth and Microstructure in Al2O3" J. Am. Ceram. Soc. 72 [1] (1989) 130
    [127] G. Arlt, "The Influence of Microstructure on the Properties of Ferroelectric Ceramics" Ferroelectrics 104 (1990) 2217
    [128] C. Kittel, "Introduction to Solid State Physics" 7th Edition, John Wiley & Sons, Inc., New York, 1996, p.391
    [129] A. Al-Shahrani and S. Abboudy, "Positive temperature coefficient in Ho-doped BaTiO3 ceramics" J. Phys. Chem. Solids 61 (2000) 955
    [130] S. Iwaya, H. Masumara, H. Taguchi and M. Hamada, J. Electron. Ceram. Jpn. 5 (1988) 33
    [131] M. Hamada, H. Taguchi, H. Masumara and S. Iwaya, Kokai Tokkyo Koho JP63-280401 (1988)
    [132] S. P. Zhou, L. T. Li, Z. L. Gui and X. W. Zhang, Guisuanyan Xuebao / J. Chinese Ceram. Soc. 22 (1994) 364
    [133] M. Kuwabara, "Influence of Stoichiometry on the PTCR Effect in Porous Barium Titanate Ceramics" J. Am. Ceram. Soc. 64 (1981) C-170
    [134] S. M. Su, L. Y. Zhang, H. T. Sun, X, Yao, "Preparation of Porous BaTiO3 PTC Thermistors by Adding Graphite Porosifiers" J. Am. Ceram. Soc. 77 (1994) 2154
    [135] H. Du and X. Yao, "Effects of Sr substitution on dielectric characteristics in Bi1.5ZnNb1.5O7 ceramics" Mater. Sci. and Eng. B 99 (2003) 437
    [136] K. Kristoffel and P. Konsin, Phys. Status Solidi 21 (1967) k39
    [137] I. B. Bersuker, "On the origin of ferroelectricity in perovskite-type crystals" Phys. Lett. 20 [6] (1966) 589
    [138] W. Luan, L. Gao and J. Guo, "Size effect on dielectric properties of fine-grained BaTiO3 ceramics" Ceram. Inter. 25 (1999) 727
    [139] A. M. Glass, "Investigation of the Electrical Properties of Sr1-xBaxNb2O6 with Special Reference to Pyroelectric Detection" J. Appl. Phys. 40 (1969) 4699

    下載圖示 校內:立即公開
    校外:2004-07-09公開
    QR CODE