| 研究生: |
劉家銘 Liu, Chia-Ming |
|---|---|
| 論文名稱: |
小波分析應用於奈米數位疊紋法之研究 Nano-Digital Moiré Method with Wavelet Theory |
| 指導教授: |
陳聯文
Chen, Lien-Wen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 小波分析 、奈米量測 、疊紋法 |
| 外文關鍵詞: | Wavelet analysis, Moire method, NaNo-measurement |
| 相關次數: | 點閱:88 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
疊紋法是一種技術發展成熟且常見的變形量測技術,本文將小波理論融入數位疊紋法創造一個新型、可量測在微奈米尺度下的平面內位移以及應變的測量技術。將經由原子力顯微鏡掃描後的試片光柵影像以及由影像處理技術製作的虛擬光柵影像疊合後就會產生疊紋,並可藉由疊紋分析變形的資訊。
但疊合後的疊紋是低對比且存在雜訊,並且會影響實驗分析。所以本文利用具有優良的特徵以及邊緣偵測的能力的小波來解決這個問題。利用二維小波分析,將疊合後的影像過濾就可以得到所須的疊紋並分析其變形,而小波同時具有雜訊過濾的能力,所以可以降低因為實驗過程所造的雜訊以增加實驗的準確性。相位移技法是一種提高疊紋法解析度的技術,本文利用改變虛擬光柵相位的方式達成四步相位移技術以增加本方法的解析度。本文量測BGA (ball grid array) 與高序石墨(HOPG, highly oriented pyrolytic graphite) 表面的熱變形並證明此方法的可行性,並且利用電子束製作高精密度的試片光柵提高疊紋法的解析度。
而疊紋法除了可以量測平面內位移也可以量測平面外的變形,本文將前面量測平面內位移的概念應用到投影疊紋法,將小波以及虛擬光柵應用到投影疊紋法並量測物體平面外變形以及表面輪廓分析,並將實驗值與有限元素法計算結果比較以證明實驗準確性。
本文將實驗所需的基本理論包括數位疊紋法、數位投影疊紋法、小波理論以及相位移法等相關理論都有詳細解說,並藉由實驗證明本文提出方法的可行性。而由實驗的結果可知,本實驗方法具有不錯的準確性且並且較以往的方法更方便且更有效率。
Abstract
Moiré method is a popular and well-developed technique for measuring the displacement fields. In the present study, a novel digital moiré method with wavelet theory is explored to measure the in-plane displacement and strain fields in the micro and nano scale. Moiré patterns are generated by overlapping the images of the specimen grating obtained from atomic force microscopy (AFM) scanning and the virtual reference grating produced by a digital image generating process. The displacement and strain filed can be obtained by analyzed the moiré patterns.
Nevertheless, the resultant moiré image suffers from having low contrast which, if left untreated, might distort the measurement result. Therefore, the wavelet transformation (WT), known for its sharpened abilities of characteristic and edge detection, is employed to capture the target moiré patterns and improve the measurement accuracy. The phase-shifting technique is one of the existing phase-evaluation methods explored to improve the resolution of the moiré method. The proposed method employs the four-step phase-shifting technique to obtain the continuous displacement fields from target moiré patterns. The four-steps phase-shifting method is realized by translating the phase of the virtual reference grating from 0 to 2 . In the present study, the BGA (Ball grid array) and HOPG (Highly oriented pyrolytic graphite) surface are used as the specimen in the in-plane deformation experiments. Also, the high sensitivity specimen grating is made by e-beam to increase the resolution of the digital moiré method.
In the other hand, the similar concept of the digital moiré method is applied in the projection moiré method. The digital projection moiré method with wavelet transformation and phase-shifting technique is applied to measure the out-of-plane deformation and surface topography. The experiment results are compared with these from the finite element method.
In the present study, the principle of the digital moiré method, digital projection moiré method, phase-shifting technology and wavelet theory are described in detail. The proposed method has been carried out in the laboratory. Experimental results have shown that the proposed method is convenient and efficient for the displacement measurement.
參 考 文 獻
1. Daniel Post and Bongtae Han, “High sensitivity moiré,” Springer-Verlag, New York, 1994.
2. Morimoto Y. and Hayashi T., “Deformation measurement during powder compaction by scanning moiré method,” Exp. Mech., 24(2), 112-118 1984.
3. Read D T, Dally J W, and Szanto M, “Scanning moiré at high magnification using optical methods,” Exp. Mech. 33, 110-115, 1993.
4. Huimin Xie, Satoshi Kishimoto, Anand Asundi, Chai Gin Boay, Norio Shinya, Jin Yu, and Bryan K A Ngoi, “In-plane deformation measurement using the atomic force microscope moiré method,” Nanotechnology, 11, 24-29, 2000.
5. Y. G. Lu, Z. W. Zhong, and J. Yu, “Thermal deformation measurement of electronic packages using the atomic force microscope scanning moiré technique,” Review of scientific insruments, 7(4), 2180-2185, 2001.
6. Huimin Xie, Chai Gin, Tong Liu, Yunguang Lu, Jin Yu, and Anand Asundi, “Phase-shifting moiré method with an atomic force microscope,” Applied optics, 40(34), 6193-6198, 2001.
7. Huimin Xie, Anand Asundi, Chai Gin Boay, Lu Yunguang, Jin Yu, Zhong Zhaowei, and Bryan K.A. Ngoi, “High resolution AFM scanning moiré method and its application to the micro-deformation in the BGA electronic package,” Microelectronics reliability, 42, 1219-1227, 2002.
8. Han B. “Higher sensitivity moiré interferometry for micromechanics studies,” Optical Engineering, 31(7), 1517-1526, 1992.
9. Huimin Xie, haixia Shang, Biao Li, and Fulong Dai, “Phase shifting focused ion beam moiré method,” Review of scientific instruments, 74(1), 256-259, 2003.
10. Huimin Xie, haixia Shang, Biao Li, Fulong Dai, and Yongming Xing, “Phase shifting nano-moiré method with scanning tunneling microscope,” Optics and laser in engineering, 41, 755-765, 2004.
11. A. Grossmann, and J. Morlet, ‘‘Decomposition of Hardly Functions into Square Integrable wavelets of constant shape,’’ SIAM J. Math. Anal., 15, 723-736, 1984.
12. I. Daubechies, ‘‘Orthogonal Based of Compactly Supported Wavelets,’’ Comm. Pure Appl. Math. , 41, 909-996, 1998.
13. Y. Meyer, ‘‘Principe D’ incertitude Bases Hilbertienes et Algebres Doperateurs ,” Seminaire Bourbaki, 662-668, 1985.
14. C. De Boor, R. A. DeVore and A. Ron, ‘‘On the Construction of Multivariate (pre) wavelets,’’ Constr. Approx., 9, 123-166, 1993.
15. S. D. Riemenschneider and Z. Shen, ‘‘Wavelets and Pre-Wavelets in Low Dimensions,’’ J. Approx. Theory, 71, 18-38 , 1992.
16. Ph. Tchamitchian, ‘‘Biothogonalite et Theory des Operateurs,’’ Rev. Math. Iberoamer, 3, 123-152, 1987.
17. A. Cohen, “Bi-orthogonal Wavelets in Wavelets”, A Tutorial in Theory and Applications, 123-152, 1994
18. A. Karoui and Vaillancourt, ‘‘Families of Bi-orthogonal Wavelets,’’ Computer Math. Appl. , 28, 25-39, 1994.
19. A. Cohen, I. Daubechies and J. Feauveau, ‘‘Bi-orthogonal Bases of Compactly Supported Wavelets,’’ Comm. Pure Appl. Math. , 45, 485-560, 1992.
20. S. G. Mallat, ‘‘A Theory for Multiresolution Signal Decomposition: The Wave Representation,’’ Comm. Pure Appl. Math. , 41, 674-693, 1988.
21. I. Daubechies, ‘‘Ten Lectures on Wavelets,’’ SIAM. , Philadelphia, 1992.
22. Liu H, Cartwright A, Basaran C., “Experiment verification of improvement of phase shifting moiré interferometry using wavelet-based image processing,”. Opt Eng., 43, 1206-1212, 2004.
23. Kemao Q, Soon S, Asundi A. Instantaneous frequency and its application to strain extraction in moiré interferometry. Appl. Opt., 42, 6504-6509, 2003.
24. Chang R, Sheu J, Lin C, Liu H. Analysis of CCD moiré pattern for micro-range measurements using the wavelet transform. Opt. Laser. technology, 35, 43-47,2003.
25. K. G. Harding, J. S. Harris, Projection moiré interferometer for vibration analysis, Appl. Opt., 22(6), 856-862, 1983.
26. P. Hopstone, A. Katz, J. Politch, “Infrastructure of time-averaged projection moiré fringes in vibration analysis, “ Appl. Opt., 28(24): 5305-5312, 1989.
27. M. Halioua, R. S. Krishnamurthy, H. Liu, F. P. Chiang, “Projection moiré with moving gratings for automated 3-D topography,” Appl. Opt., 22(6), 850-855, 1983.
28. E. U. Wagemann, T. Haist, M. Schonleber, H. J. Tiziani, “Fast shape and position control by moire-filtering and opject-adapted fringe projection,” Optics Communications, 165, 7-10, 1999.
29. H. Takasaki, “Moiré topography,” Appl. Opt., 9(4), 1467-1472, 1970.
30. D. M. Meadows, W. O. Johnson, J. B. Allen, “Generation of surface contours by moiré patterns,” Appl. Opt., 9(4), 942-949, 1970.
31. Y. B. Choi, S. W. Kim, “Phase-shifting grating projection moiré topography,” Opt. Eng. , 37(3), 1005-1010, 1998.
32. Y. M He, C. J. Tay, H. M. Shang, “Deformation and profile measurement using the digital projection grating method,” Opt. Laser Eng., 30, 367-377, 1998.
33. C. Quan, C. J. Tay, H. M. Shang, “Fringe projection technique for the 3-D shape measurement of a hydrofrmed shell,” J. Mater Process Tech., 88-91, 1999.
34. C. Quan, C. J. Tay, H. M. Shang, P. J. Bryanston-Cross, “Contour measurement by fibre optic fringe projection and Fourier transform analysis,” Opt. Commun. ,119, 479-485, 1995.
35. L. Jin, Y. Kodera, T. Yoshizawa, Y. Otani, “Shadow moiré profilometry using the phase-shifting method,” Opt. Eng., 39(8), 2119-2123,2000.
36. J. Degrieck, W. Van Paepegem, P. Boone, “Application of digital phase-shift shadow moiré to micro deformation measurements of curved surfaces,” Opt. Laser Eng., 36, 29-35, 2001.
37. Huimun Xie, Biao Li, Robert Geer, Bai Xu, and James Castracane, “Focused ion beam moire method,” Optics and laser engineering, 40, 163-177, 2003.
38. Biao Li, Xiaosong Tang, Huimun Xie and Xin Zhang, “Strain analysis in MEMS/NEMS structures and devices by using focused ion beam system,” Sensors and actuators A, 111, 57-62, 2004.
39. Dong Yan, JinCheng, and Alyssa Apsel, “Fabrication of SOI-based nano-gratings for moire measurement using focused ion beam,” Sensors and actuators A, 115, 60-66, 2004.
40. Yi Zhao, Xin Zhang, “Determination of the deformations in polymeric nanostructures using geometric moire techniques for biological applications,” Sensors and actuators A. Pressed
41. H. M. Guo, H. W. Liu, Y. L. Wang, H. J. Gao, H. X. Shang, Z. W. Liu, H. M. Xie and F. L. Dai, “Nanometre moire fringes in scanning tunneling microscopy of surface lattices,” Nanotechnology, 15, 991-995, 2004.
42. Z. W.Zhong and Y. G. Lu, “An AFM moiré technique for the inspection of surface deformations,” Int. J. Adv. Manuf. Technol., 23 462-466, 2004.
43. Huimin Xie, Zhanwei Liu, Daining Fang, Fulong Dai, Hongjun Gao and Yapu Zhao, “A study on the digital nano-moire method and it’s phase shifting technique,” Meas. Sci. Technol. 15, 1716-1721, 2004.
44. J. Wang, Z. Qian, and S. Liu, “Process Induced Stresses of a Flip-Chip Packaging by Sequential Processing Modeling Technique,” Transactions on ASME J. of Electronic Packaging, 120, 309-313, 1998.
45. M. Mukai, T. Kawakami, T. Endo, Y. Hiruta and K. Takahashi, “Elastic-Creep Thermal Stress Analyses for the SMT-PGA Package’s Solder Joint,” Mechanics and Material for Electronic Packaging: Volume 2-Thermal and Mechanical Behavior and Modeling, 197-203, 1994
46. C.P. Yeh, W. X. Zhou and K. Wyatt, “Parametric Finite Element Analysis of Flip Chip Reliability”, The International Society for Hybrid Microelectronics, 19(2), 120-127, 1996.
47. Q. Yao and J. Qu, “Three-Dimention Versus Two-Dimention Final Element Modeling of Flip-Chip Packages”, Transactions on ASME J. of Electronic Packaging, 121, 196-201, 1999.
48. C. A. Le Gall, J. Qu and D. L. McDowell ,“Some Mechanics Issues Related to the Thermomechanical Reliability of Flip Chip DCA with Underfill Encapsulation,” Application of Fracture Mechanics in Electronic packaging, 20, 85-95, 1997.
49. S. Michaelides and S. Sitaraman, “Role of Underfilling Imperfections on Flip-chip Reliability”, Advances in Electronic Packaging, 19(2), 1487-1493, 1997.
50. H. Doi, K. Kawano and A. Yasukawa, “Reliability of Underfill-Encapsulate Flip-Chip Packages,” Application of Fracture Mechanics in Electronic packaging, 20, 7-14 , 1997.
51. K. Darbha, J. H. Okura, S. Shetty and A. Dasgupta, “Thermomechanical Durability Analysis of Flip Chip Solder Interconnects : Part 1-Without Underfill,” Transactions on ASME J. of Electronic Packaging,121, 231-236, 1999.
52. K. Darbha, J. H. Okura, S. Shetty and A. Dasgupta, “Thermomechanical Durability Analysis of Flip Chip Solder Interconnects : Part 2-With Underfill,” Transactions on ASME J. of Electronic Packaging, 121, 237-241, 1999
53. Dennis C Ghiglia and Mark D. Pritt, “Two-dimensional phase unwrapping theory, algorithms, and software”, New York: A Wiley-Interscience publication, 1998.
54. W.W. Macy, “Two-dimensional fringe-pattern analysis”, Appl. Opt. 22, 3898-3901, 1983.
55. D. C. Ghiglia, G. A. Mastin, and L. A. Romero, “Cellulr-automata Method for phase unwrapping,” Journal of optical society of America, 4(1), 297-280, 1987.
56. G. Strange, ‘‘ Wavelets and Dilation Equation: A Brief Introduction,’’ SIAM Review 31, 614-627, 1989.
57. J. Wang, Z. qian, S. Liu, “Process Induced Stress of a Flip-Chip Packaging by Sequential Processing Modeling Technique,” Journal of electronic packaging, 120, 309-313, 1998.
58. Balwant S., “Performance Comparison of BGA and Flex-CSP Using Parameteric FEA Models,” Fifteenth IEEE SEMI-THERMTM Symposium, 119-124, 1999.
59. John Lau, C.P. Wong, John L. Prince, Wataru Nakayama, “Electronic packaging design, materials, process, and reliability”, McGraw-Hill, Washington, D.C ,1998.
60. R.C. Hibbeler, “Mechanics of materials”, Prentice-Hall, Singapore, 2004.