簡易檢索 / 詳目顯示

研究生: 王麒鳴
Wang, Chi-Ming
論文名稱: 廢熱回收系統中熱電模組在不同鰭片設計之性能與熱應力分析
Performance and thermal stress analyses of a thermoelectric module with different fin designs in a waste heat recovery system
指導教授: 陳維新
Chen, Wei-Hsin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 100
中文關鍵詞: 熱電發電機板式鰭片和方形柱狀鰭片廢熱回收來源項計算流體力學折衷方法紊流熱應力多目標遺傳算法
外文關鍵詞: Thermoelectric generator, Plate and square pin fins, Waste heat recovery, Source term, Computational fluid dynamic, Compromise method, Turbulent flow, Thermal stress, Multi-Objective Genetic Algorithm (MOGA)
相關次數: 點閱:82下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著人類生活水平的提高,能源的需求也逐漸增加。根據過去研究指出,大約60%的能量在工業的燃燒或其他生產過程中,以廢熱的型式排放至外界,形成能源的浪費。因此若能將這些廢熱回收,不僅能減少對環境的負面影響,也能提高系統的整體效率。熱電發電機在廢熱回收的系統中能夠將多餘的熱透過賽貝克效應直接轉化成電能,和其他已開發的技術相比,具有沒有機械部件、安靜、低維護成本和對環境友好等優點。因此,本研究分為兩部分,第一部分討論具有不同類型鰭片的熱電系統,以數值模擬分析熱電模塊在廢熱回收系統中的熱電性能。第二部分調查具有不同數量的方形柱狀鰭片的熱電系統,並透過多目標優化的方法來找到最佳的幾何配置,使熱電發電機保持輸出功率,並提高使用的壽命。
    在本研究的第一部分,如何提高熱電發電機的性能是廢熱回收並將其轉化為綠色電力的重要議題,這有利於實現二氧化碳淨零排放。通過收集汽車尾氣餘熱的三維數值模擬,研究了具有鰭片影響下熱電模塊 (TEM) 的傳熱和發電。本研究考慮在沒有鰭片以及具有板式鰭片和方形柱狀鰭片的熱流道中使用 TEM,而冷流道用於冷卻 TEM。結果表明,安裝板式鰭片或方形柱狀鰭片可以顯著增強廢熱的收集,其中方形柱狀鰭片的最佳數量為78個,與板式鰭片相比,TEM的輸出功率提高了24.14%。對方形柱狀鰭片單位面積的熱傳量比和熱傳量比進行折衷,同時考慮TEM的輸出功率和材料成本。結果發現方形柱狀鰭片的最佳數量為54。 還評估了熱流體的溫度和質量流量對TEM性能的影響,結果表明前者影響顯著,而後者相對不重要。安裝更多的方形柱狀鰭片會導致更高的壓降。儘管如此,TEM 的淨輸出功率隨著方形柱狀鰭片數量的增加而增加,最高值出現在78片。
    在本研究的第二部分,採用多物理場耦合方法對汽車尾氣回收熱電系統的計算流體動力學(CFD)、熱電和靜態結構進行數值分析。我們檢查了具有不同數量的方形柱狀鰭片的熱電模塊的熱電和機械性能。我們的結果表明,對於不同數量的方形柱狀鰭片,熱電模塊熱側的傳熱率隨著翅片數量的增加而增加。當翅片數量從36片增加到84片時,傳熱率提高了8.57%。此外,由於傳熱的差異,在廢熱回收系統中,熱電模塊熱端的溫度分佈是不均勻的。因此,熱電模塊的熱應力是不均勻的,且最大的熱應力出現在熱電模塊的熱電腿的角落。為了降低最大熱應力,陶瓷板和熱電腿的厚度使用多目標遺傳算法(MOGA)進行了優化。優化結果表明,熱電模塊的最大熱應力與其輸出功率成正比,這意味著隨著熱電模塊中的最大熱應力最小,其輸出功率將接近最小值。我們採用相同的方法來最小化熱電模塊上的最大熱應力,同時保持其輸出功率。在陶瓷板厚度小於 0.8 mm 和熱電腿厚度大於2 mm的情況下,最大熱應力降低約11.78%。

    With the improvement of human living standards, the demand for energy is gradually increasing. According to past studies, about 60% of the energy is discharged to the outside in the form of waste heat during industrial combustion or other production processes, which forms a waste of energy. Therefore, if the waste heat can be recycled, not only can the negative impact on the environment be reduced, but also the overall efficiency of the system can be improved. In the waste heat recovery system, thermoelectric generators can directly convert excess heat into electrical energy through the Seebeck effect. Compared with other developed technologies, thermoelectric generators have the advantages of no mechanical parts, quietness, low maintenance costs, and environmental friendliness. Therefore, this research is divided into two parts. The first part discusses thermoelectric systems with different types of fins and analyzes the thermoelectric performance of thermoelectric modules in waste heat recovery systems by numerical simulation. The second part investigates thermoelectric systems with different numbers of square pin fins and finds the best geometric configuration through the multi-objective optimization method so that the thermoelectric generator maintains output power and improves the service life.
    In the first part of this study, how to improve the performance of thermoelectric generators is an important issue to recover waste heat and convert it into green power, which is conducive to practicing net-zero carbon dioxide emissions. The heat transfer and power generation of a thermoelectric module (TEM) under the influence of fin installation is investigated by three-dimensional numerical simulations where vehicle exhaust waste heat is harvested. This study considers a TEM in a hot channel without fins as well as with plate fins and square pin fins, while a cold channel is used to cool the TEM. The results show that installing plate fins or square pin fins can drastically intensify waste heat harvest, and the optimal number of square pin fins is 78 which increases the output power of the TEM by 24.14% compared to the plate fins. A compromise method in terms of heat flow rate ratio and heat flow rate ratio per unit area of square pin fins is conducted, which simultaneously consider the TEM’s output power and material cost. As a result, it is found that the optimal number of sqaure pin fins is 54. The influences of the temperature and mass flow rate of the hot fluid on TEM performance are also evaluated, and the results indicate that the former has a pronounced impact whereas the latter is relatively unimportant. Installing more square pin fins give rise to a higher pressure drop. Nevertheless, the net output power of the TEM increases with increasing the number of square pin fins and the highest value occurs at 78.
    In the second part of this study, a multiphysics field coupling method is employed to numerically analyze the computational fluid dynamics (CFD), thermoelectrics (TEs), and static structure of a thermoelectric module (TEM) for use in a waste heat recovery system. We examine the TE and mechanical performance of a TEM with varying numbers of square pin fins. Our results indicate that for different numbers of square pin fins, the heat transfer rate of the TEM hot side increases as the number of fins increases. When the number of fins increases from 36 to 84, the heat transfer rate improves by 8.57%. In addition, the temperature distribution in a TEM in a waste heat recovery system is uneven due to differences in heat transfer. Therefore, the thermal stress of the TEM is uneven, and the maximum thermal stress occurs in the TE legs, which are located at the corners of the TEM. To reduce the maximum thermal stress, the thicknesses of the ceramic plate and the TE legs are optimized using the Multi-Objective Genetic Algorithm (MOGA). The optimization results indicate that the maximum thermal stress of a TEM is proportional to its output power, meaning that as the maximum thermal stress in the TEM is minimized, its output power will approach the minimum value. We employ the same method to minimize the maximum thermal stress on the TEM while maintaining its output power. The maximum thermal stress is reduced by approximately 11.78%. Thermal stress is reduced under a ceramic plate thickness smaller than 0.8 mm and a TE leg thickness greater than 2 mm.

    中文摘要 i Abstract iii 誌謝 vi Table of Contents vii List of Tables x List of Figures xi Chapter 1 Introduction 1 1.1. Background 1 1.2. Motivation and objectives 5 1.3. A schematics of experimental procedure 6 Chapter 2 Literature Review 8 2.1. The thermoelectric generators system with different types of fins 8 2.2. The thermal stress of TE legs with different shapes 9 Chapter 3 Theory and Methodology 12 3.1. Performance evaluation and improvement of thermoelectric generators (TEG): Fin installation and compromise optimization 12 3.1.1. Physical configuration 12 3.1.2. Mathematical formulations 17 3.1.3. Numerical method and validation 21 3.1.4. Operating and boundary conditions in the system 28 3.2. Optimization of a thermoelectric module geometry to reduce thermal stress in a waste heat recovery system with varying numbers of square pin fins 30 3.2.1. Physical configuration 30 3.2.2. Material properties 33 3.2.3. Mathematical formulations 36 3.2.4. Numerical method and validation 41 3.2.5. Operating conditions in the system 47 3.2.6. Objective functions and constraints 50 Chapter 4 Results and Discussion 51 4.1. Performance evaluation and improvement of thermoelectric generators (TEG): Fin installation and compromise optimization 51 4.1.1. Isothermal contours in the waste heat recovery system 51 4.1.2. Heat transfer rate and TEM performance 56 4.1.3. Compromise of heat transfer and material cost 61 4.1.4. Effect of different temperatures under the various mass flow rates 64 4.1.5. Pressure drop and net output power 68 4.2. Optimization of a thermoelectric module geometry to reduce thermal stress in a waste heat recovery system with varying numbers of square pin fins 72 4.2.1. Impact of different numbers of square pin fins on the hot side of the TEM 72 4.2.2. Thermo-mechanical analysis 76 4.2.3. Optimization by MOGA 82 4.2.4. Evolutionary calculation of thermoelectric module geometry 85 Chapter 5 Conclusions and Future Works 90 5.1. Conclusions 90 5.2. Future works 92 References 93 自述 99

    [1] Su Z, Zhang M, Xu P, Zhao Z, Wang Z, Huang H, et al. Opportunities and strategies for multigrade waste heat utilization in various industries: A recent review. Energy Conversion and Management. 2021;229:113769.
    [2] Perera F. Pollution from Fossil-Fuel Combustion is the Leading Environmental Threat to Global Pediatric Health and Equity: Solutions Exist. International Journal of Environmental Research and Public Health. 2018;15(1).
    [3] Yang Y, Bremner S, Menictas C, Kay M. Battery energy storage system size determination in renewable energy systems: A review. Renewable and Sustainable Energy Reviews. 2018;91:109-25.
    [4] Tang S, Wang C, Liu X, Su G, Tian W, Qiu S, et al. Experimental investigation of a novel heat pipe thermoelectric generator for waste heat recovery and electricity generation. International Journal of Energy Research. 2020;44(9):7450-63.
    [5] Zeb K, Ali SM, Khan B, Mehmood CA, Tareen N, Din W, et al. A survey on waste heat recovery: Electric power generation and potential prospects within Pakistan. Renewable and Sustainable Energy Reviews. 2017;75:1142-55.
    [6] Pourkiaei SM, Ahmadi MH, Sadeghzadeh M, Moosavi S, Pourfayaz F, Chen L, et al. Thermoelectric cooler and thermoelectric generator devices: A review of present and potential applications, modeling and materials. Energy. 2019;186:115849.
    [7] Champier D. Thermoelectric generators: A review of applications. Energy Conversion and Management. 2017;140:167-81.
    [8] Shen Z-G, Tian L-L, Liu X. Automotive exhaust thermoelectric generators: Current status, challenges and future prospects. Energy Conversion and Management. 2019;195:1138-73.
    [9] Sahin AZ, Ismaila KG, Yilbas BS, Al-Sharafi A. A review on the performance of photovoltaic/thermoelectric hybrid generators. International Journal of Energy Research. 2020;44(5):3365-94.
    [10] Li P, Ai X, Zhang Q, Gu S, Wang L, Jiang W. Enhanced thermoelectric performance of hydrothermally synthesized polycrystalline Te-doped SnSe. Chinese Chemical Letters. 2021;32(2):811-5.
    [11] Karana DR, Sahoo RR. Thermohydraulic performance of a new internal twisted ribs automobile exhaust heat exchanger for waste heat recovery applications. International Journal of Energy Research. 2020;44(14):11417-33.
    [12] El-Sheikh HA, Gurimella SV. Enhancement of air jet impingement heat transfer using pin-fin heat sinks. IEEE Transactions on Components and Packaging Technologies. 2000;23(2):300-8.
    [13] T S, D SK. Heat transfer study on different surface textured pin fin heat sink. International Communications in Heat and Mass Transfer. 2020;119:104902.
    [14] Haghighi SS, Goshayeshi HR, Safaei MR. Natural convection heat transfer enhancement in new designs of plate-fin based heat sinks. International Journal of Heat and Mass Transfer. 2018;125:640-7.
    [15] Maji A, Choubey G. Improvement of heat transfer through fins: A brief review of recent developments. Heat Transfer. 2020;49(3):1658-85.
    [16] Jang D, Yu S-H, Lee K-S. Multidisciplinary optimization of a pin-fin radial heat sink for LED lighting applications. International Journal of Heat and Mass Transfer. 2012;55(4):515-21.
    [17] Chen M, Rosendahl LA, Condra T. A three-dimensional numerical model of thermoelectric generators in fluid power systems. International Journal of Heat and Mass Transfer. 2011;54(1):345-55.
    [18] Seo YM, Ha MY, Park SH, Lee GH, Kim YS, Park YG. A numerical study on the performance of the thermoelectric module with different heat sink shapes. Applied Thermal Engineering. 2018;128:1082-94.
    [19] Bejjam RB, Dabot M, Wondatir T, Negash S. Performance evaluation of thermoelectric generator using CFD. Materials Today: Proceedings. 2021.
    [20] Luo D, Wang R, Yan Y, Yu W, Zhou W. Transient numerical modelling of a thermoelectric generator system used for automotive exhaust waste heat recovery. Applied Energy. 2021;297:117151.
    [21] Patil DS, Arakerimath RR, Walke PV. Thermoelectric materials and heat exchangers for power generation – A review. Renewable and Sustainable Energy Reviews. 2018;95:1-22.
    [22] Hasan MN, Wahid H, Nayan N, Mohamed Ali MS. Inorganic thermoelectric materials: A review. International Journal of Energy Research. 2020;44(8):6170-222.
    [23] Yusuf A, Bayhan N, Ibrahim AA, Tiryaki H, Ballikaya S. Geometric optimization of thermoelectric generator using genetic algorithm considering contact resistance and Thomson effect. International Journal of Energy Research. 2021;45(6):9382-95.
    [24] Wang Y, Li S, Xie X, Deng Y, Liu X, Su C. Performance evaluation of an automotive thermoelectric generator with inserted fins or dimpled-surface hot heat exchanger. Applied Energy. 2018;218:391-401.
    [25] Kim TY, Lee S, Lee J. Fabrication of thermoelectric modules and heat transfer analysis on internal plate fin structures of a thermoelectric generator. Energy Conversion and Management. 2016;124:470-9.
    [26] Lu X, Yu X, Qu Z, Wang Q, Ma T. Experimental investigation on thermoelectric generator with non-uniform hot-side heat exchanger for waste heat recovery. Energy Conversion and Management. 2017;150:403-14.
    [27] Jang J-Y, Tsai Y-C, Wu C-W. A study of 3-D numerical simulation and comparison with experimental results on turbulent flow of venting flue gas using thermoelectric generator modules and plate fin heat sink. Energy. 2013;53:270-81.
    [28] Chen W-H, Wu P-H, Lin Y-L. Performance optimization of thermoelectric generators designed by multi-objective genetic algorithm. Applied Energy. 2018;209:211-23.
    [29] Sun H, Ge Y, Liu W, Liu Z. Geometric optimization of two-stage thermoelectric generator using genetic algorithms and thermodynamic analysis. Energy. 2019;171:37-48.
    [30] Arora R, Kaushik SC, Arora R. Thermodynamic modeling and multi-objective optimization of two stage thermoelectric generator in electrically series and parallel configuration. Applied Thermal Engineering. 2016;103:1312-23.
    [31] Jonsson H, Moshfegh B. Modeling of the thermal and hydraulic performance of plate fin, strip fin, and pin fin heat sinks-influence of flow bypass. IEEE Transactions on Components and Packaging Technologies. 2001;24(2):142-9.
    [32] Rezania A, Rosendahl LA. A comparison of micro-structured flat-plate and cross-cut heat sinks for thermoelectric generation application. Energy Conversion and Management. 2015;101:730-7.
    [33] Şara ON. Performance analysis of rectangular ducts with staggered square pin fins. Energy Conversion and Management. 2003;44(11):1787-803.
    [34] Peltonen P, Saari K, Kukko K, Vuorinen V, Partanen J. Large-Eddy Simulation of local heat transfer in plate and pin fin heat exchangers confined in a pipe flow. International Journal of Heat and Mass Transfer. 2019;134:641-55.
    [35] Yang K-S, Chu W-H, Chen I-Y, Wang C-C. A comparative study of the airside performance of heat sinks having pin fin configurations. International Journal of Heat and Mass Transfer. 2007;50(23):4661-7.
    [36] Yilbas BS, Akhtar SS, Sahin AZ. Thermal and stress analyses in thermoelectric generator with tapered and rectangular pin configurations. Energy. 2016;114:52-63.
    [37] Shittu S, Li G, Zhao X, Ma X, Akhlaghi YG, Ayodele E. High performance and thermal stress analysis of a segmented annular thermoelectric generator. Energy Conversion and Management. 2019;184:180-93.
    [38] Al-Merbati AS, Yilbas BS, Sahin AZ. Thermodynamics and thermal stress analysis of thermoelectric power generator: Influence of pin geometry on device performance. Applied Thermal Engineering. 2013;50(1):683-92.
    [39] Shittu S, Li G, Xuan Q, Zhao X, Ma X, Cui Y. Electrical and mechanical analysis of a segmented solar thermoelectric generator under non-uniform heat flux. Energy. 2020;199:117433.
    [40] Bakhtiaryfard L, Chen YS. Design and Analysis of a Thermoelectric Module to Improve the Operational Life. Advances in Mechanical Engineering. 2014;7(1):152419.
    [41] Wu Y, Ming T, Li X, Pan T, Peng K, Luo X. Numerical simulations on the temperature gradient and thermal stress of a thermoelectric power generator. Energy Conversion and Management. 2014;88:915-27.
    [42] Wang Y, Li S, Zhang Y, Yang X, Deng Y, Su C. The influence of inner topology of exhaust heat exchanger and thermoelectric module distribution on the performance of automotive thermoelectric generator. Energy Conversion and Management. 2016;126:266-77.
    [43] Du Q, Diao H, Niu Z, Zhang G, Shu G, Jiao K. Effect of cooling design on the characteristics and performance of thermoelectric generator used for internal combustion engine. Energy Conversion and Management. 2015;101:9-18.
    [44] Wan Q, Liu X, Gu B, Bai W, Su C, Deng Y. Thermal and acoustic performance of an integrated automotive thermoelectric generation system. Applied Thermal Engineering. 2019;158:113802.
    [45] Ma T, Lu X, Pandit J, Ekkad SV, Huxtable ST, Deshpande S, et al. Numerical study on thermoelectric–hydraulic performance of a thermoelectric power generator with a plate-fin heat exchanger with longitudinal vortex generators. Applied Energy. 2017;185:1343-54.
    [46] Marvão A, Coelho PJ, Rodrigues HC. Optimization of a thermoelectric generator for heavy-duty vehicles. Energy Conversion and Management. 2019;179:178-91.
    [47] Luo D, Wang R, Yu W, Zhou W. A numerical study on the performance of a converging thermoelectric generator system used for waste heat recovery. Applied Energy. 2020;270:115181.
    [48] Stobart R, Wijewardane MA, Yang Z. Comprehensive analysis of thermoelectric generation systems for automotive applications. Applied Thermal Engineering. 2017;112:1433-44.
    [49] Cao Q, Luan W, Wang T. Performance enhancement of heat pipes assisted thermoelectric generator for automobile exhaust heat recovery. Applied Thermal Engineering. 2018;130:1472-9.
    [50] Erturun U, Erermis K, Mossi K. Effect of various leg geometries on thermo-mechanical and power generation performance of thermoelectric devices. Applied Thermal Engineering. 2014;73(1):128-41.
    [51] Ming T, Yang W, Wu Y, Xiang Y, Huang X, Cheng J, et al. Numerical analysis on the thermal behavior of a segmented thermoelectric generator. International Journal of Hydrogen Energy. 2017;42(5):3521-35.
    [52] Fan S, Gao Y. Numerical analysis on the segmented annular thermoelectric generator for waste heat recovery. Energy. 2019;183:35-47.
    [53] Shittu S, Li G, Zhao X, Ma X, Akhlaghi YG, Ayodele E. Optimized high performance thermoelectric generator with combined segmented and asymmetrical legs under pulsed heat input power. Journal of Power Sources. 2019;428:53-66.
    [54] Chen W-H, Lin Y-X, Chiou Y-B, Lin Y-L, Wang X-D. A computational fluid dynamics (CFD) approach of thermoelectric generator (TEG) for power generation. Applied Thermal Engineering. 2020;173:115203.
    [55] Liu C, Deng YD, Wang XY, Liu X, Wang YP, Su CQ. Multi-objective optimization of heat exchanger in an automotive exhaust thermoelectric generator. Applied Thermal Engineering. 2016;108:916-26.
    [56] Ahsan M. Numerical analysis of friction factor for a fully developed turbulent flow using k–ε turbulence model with enhanced wall treatment. Beni-Suef University Journal of Basic and Applied Sciences. 2014;3(4):269-77.
    [57] Rolander N, Rambo J, Joshi Y, Allen JK, Mistree F. An Approach to Robust Design of Turbulent Convective Systems. Journal of Mechanical Design. 2006;128(4):844-55.
    [58] Chen W-H, Lin Y-X, Wang X-D, Lin Y-L. A comprehensive analysis of the performance of thermoelectric generators with constant and variable properties. Applied Energy. 2019;241:11-24.
    [59] Amini Z, Ilham Z, Ong HC, Mazaheri H, Chen W-H. State of the art and prospective of lipase-catalyzed transesterification reaction for biodiesel production. Energy Conversion and Management. 2017;141:339--53.
    [60] Yan Y, Malen JA. Periodic heating amplifies the efficiency of thermoelectric energy conversion. Energy & Environmental Science. 2013;6(4):1267-73.
    [61] Chen W-H, Wu P-H, Wang X-D, Lin Y-L. Power output and efficiency of a thermoelectric generator under temperature control. Energy Conversion and Management. 2016;127:404-15.
    [62] Wang Y, Shi Y, Mei D, Chen Z. Wearable thermoelectric generator to harvest body heat for powering a miniaturized accelerometer. Applied Energy. 2018;215:690-8.
    [63] Selimefendigil F, Öztop HF, Özgul R. Turbulent forced convection of nanofluid in an elliptic cross-sectional pipe. International Communications in Heat and Mass Transfer. 2019;109:104384.
    [64] Zhou M, He Y, Chen Y. A heat transfer numerical model for thermoelectric generator with cylindrical shell and straight fins under steady-state conditions. Applied Thermal Engineering. 2014;68(1):80-91.
    [65] Liao M, He Z, Jiang C, Fan Xa, Li Y, Qi F. A three-dimensional model for thermoelectric generator and the influence of Peltier effect on the performance and heat transfer. Applied Thermal Engineering. 2018;133:493-500.
    [66] Launder BE, Spalding DB. PAPER 8 - THE NUMERICAL COMPUTATION OF TURBULENT FLOWS. In: Patankar SV, Pollard A, Singhal AK, Vanka SP, editors. Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion: Pergamon; 1983. p. 96-116.
    [67] Chen W-H, Liao C-Y, Hung C-I. A numerical study on the performance of miniature thermoelectric cooler affected by Thomson effect. Applied Energy. 2012;89(1):464-73.
    [68] Chen W-H, Huang S-R, Wang X-D, Wu P-H, Lin Y-L. Performance of a thermoelectric generator intensified by temperature oscillation. Energy. 2017;133:257-69.
    [69] Cheng C-H, Huang S-Y, Cheng T-C. A three-dimensional theoretical model for predicting transient thermal behavior of thermoelectric coolers. International Journal of Heat and Mass Transfer. 2010;53(9):2001-11.
    [70] Cheng C-H, Huang S-Y. Development of a non-uniform-current model for predicting transient thermal behavior of thermoelectric coolers. Applied Energy. 2012;100:326-35.
    [71] He W, Wang S, Lu C, Li Y, Zhang X. An Optimization Analysis of Thermoelectric Generator Structure for Different Flow Directions of Working Fluids. Energy Procedia. 2014;61:718-21.
    [72] Chen W-H, Chiou Y-B. Geometry design for maximizing output power of segmented skutterudite thermoelectric generator by evolutionary computation. Applied Energy. 2020;274:115296.
    [73] Pu L, Qi D, Xu L, Li Y. Optimization on the performance of ground heat exchangers for GSHP using Kriging model based on MOGA. Applied Thermal Engineering. 2017;118:480-9.
    [74] Hou R, Du H, Yan Z, Yu W, Tao T, Mei X. The modeling method on thermal expansion of CNC lathe headstock in vertical direction based on MOGA. The International Journal of Advanced Manufacturing Technology. 2019;103(9):3629-41.
    [75] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation. 2002;6(2):182-97.
    [76] Wang Y, Wu C, Tang Z, Yang X, Deng Y, Su C. Optimization of fin distribution to improve the temperature uniformity of a heat exchanger in a thermoelectric generator. Journal of Electronic Materials. 2015;44(6):1724-32.
    [77] Borcuch M, Musiał M, Gumuła S, Sztekler K, Wojciechowski K. Analysis of the fins geometry of a hot-side heat exchanger on the performance parameters of a thermoelectric generation system. Applied Thermal Engineering. 2017;127:1355-63.
    [78] Guo K, Zhang N, Smith R. Design optimisation of multi-stream plate fin heat exchangers with multiple fin types. Applied Thermal Engineering. 2018;131:30-40.
    [79] Li H-Y, Chao S-M. Measurement of performance of plate-fin heat sinks with cross flow cooling. International Journal of Heat and Mass Transfer. 2009;52(13):2949-55.
    [80] Micheli L, Reddy KS, Mallick TK. Experimental comparison of micro-scaled plate-fins and pin-fins under natural convection. International Communications in Heat and Mass Transfer. 2016;75:59-66.
    [81] Kim D-K, Kim SJ, Bae J-K. Comparison of thermal performances of plate-fin and pin-fin heat sinks subject to an impinging flow. International Journal of Heat and Mass Transfer. 2009;52(15):3510-7.
    [82] Yüncü H, Anbar G. An experimental investigation on performance of rectangular fins on a horizontal base in free convection heat transfer. Heat and Mass Transfer. 1998;33(5):507-14.
    [83] Yadav V, Baghel K, Kumar R, Kadam ST. Numerical investigation of heat transfer in extended surface microchannels. International Journal of Heat and Mass Transfer. 2016;93:612-22.
    [84] Wang C-C, Hung C-I, Chen W-H. Design of heat sink for improving the performance of thermoelectric generator using two-stage optimization. Energy. 2012;39(1):236-45.
    [85] Espinosa N, Lazard M, Aixala L, Scherrer H. Modeling a Thermoelectric Generator Applied to Diesel Automotive Heat Recovery. Journal of Electronic Materials. 2010;39(9):1446-55.
    [86] Yu G, Shu G, Tian H, Wei H, Liu L. Simulation and thermodynamic analysis of a bottoming Organic Rankine Cycle (ORC) of diesel engine (DE). Energy. 2013;51:281-90.
    [87] Wang Y, Dai C, Wang S. Theoretical analysis of a thermoelectric generator using exhaust gas of vehicles as heat source. Applied Energy. 2013;112:1171-80.
    [88] Zhou F, Catton I. Numerical evaluation of flow and heat transfer in plate-pin fin heat sinks with various pin cross-sections. Numerical Heat Transfer, Part A: Applications. 2011;60(2):107-28.
    [89] Congshun W, Youmin Y, Simon T, Tianhong C, North MT. Microfabrication of short pin fins on heat sink surfaces to augment heat transfer performance. Conference Microfabrication of short pin fins on heat sink surfaces to augment heat transfer performance. p. 944-50.
    [90] Niu X, Yu J, Wang S. Experimental study on low-temperature waste heat thermoelectric generator. Journal of Power Sources. 2009;188(2):621-6.
    [91] Kim TY, Kwak J, Kim B-w. Application of compact thermoelectric generator to hybrid electric vehicle engine operating under real vehicle operating conditions. Energy Conversion and Management. 2019;201:112150.
    [92] Lu H, Wu T, Bai S, Xu K, Huang Y, Gao W, et al. Experiment on thermal uniformity and pressure drop of exhaust heat exchanger for automotive thermoelectric generator. Energy. 2013;54:372-7.
    [93] Zhao J, Huang S, Gong L, Huang Z. Numerical study and optimizing on micro square pin-fin heat sink for electronic cooling. Applied Thermal Engineering. 2016;93:1347-59.
    [94] Luo D, Wang R, Yu W, Zhou W. Performance optimization of a converging thermoelectric generator system via multiphysics simulations. Energy. 2020;204:117974.
    [95] Luo D, Wang R, Yu W, Sun Z, Meng X. Modelling and simulation study of a converging thermoelectric generator for engine waste heat recovery. Applied Thermal Engineering. 2019;153:837-47.
    [96] Wan Z, Fang J, Tu N, Wei J, Qaisrani MA. Numerical study on thermal stress and cold startup induced thermal fatigue of a water/steam cavity receiver in concentrated solar power (CSP) plants. Solar Energy. 2018;170:430-41.
    [97] Fang J, Zhang C, Tu N, Wei J, Wan Z. Thermal characteristics and thermal stress analysis of a superheated water/steam solar cavity receiver under non-uniform concentrated solar irradiation. Applied Thermal Engineering. 2021;183:116234.
    [98] Turenne S, Clin T, Vasilevskiy D, Masut RA. Finite Element Thermomechanical Modeling of Large Area Thermoelectric Generators based on Bismuth Telluride Alloys. Journal of Electronic Materials. 2010;39(9):1926-33.
    [99] Dziurdzia P, Mirocha A. From constant to temperature dependent parameters based electrothermal models of TEG. Conference From constant to temperature dependent parameters based electrothermal models of TEG. p. 555-9.
    [100] Pandel D, Kumar Singh A, Kumar Banerjee M, Gupta R. Optimization of Mg2(Si-Sn) based thermoelectric generators using the Taguchi method. Materials Today: Proceedings. 2020.
    [101] Ranjan M, Maiti T. Device modeling and performance optimization of thermoelectric generators under isothermal and isoflux heat source condition. Journal of Power Sources. 2020;480:228867.
    [102] Erturun U, Erermis K, Mossi K. Influence of leg sizing and spacing on power generation and thermal stresses of thermoelectric devices. Applied Energy. 2015;159:19-27.

    下載圖示 校內:2023-08-31公開
    校外:2023-08-31公開
    QR CODE