簡易檢索 / 詳目顯示

研究生: 羅志文
Lo, Chi-Wen
論文名稱: 抑制類鐸受體九號基因表現對紅斑性狼瘡和綠膿桿菌角膜炎小鼠模型之影響
Lentiviral-mediated silencing of Toll-like receptor 9 through RNA interference in murine models of lupus and Pseudomonas aeruginosa keratitis
指導教授: 蕭璦莉
Shiau, Ai-Li
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 57
中文關鍵詞: 紅斑性狼瘡
外文關鍵詞: Lentivirus, SLE, Pseudomonas aeruginosa keratitis
相關次數: 點閱:48下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 哺乳動物藉由自身的免疫系統來抵抗外來病原菌的入侵。而這些免疫系統,我們可大略分為innate immunity和 adaptive immunity兩大類,其中,innate immunity最近被發現是利用Toll-like receptor (TLR)來分辨自體和外來的物質。TLR是一種固定去辨認病原菌上特定物質的受體,並不會像T細胞或B細胞的受體會藉由體細胞基因重組去改變其對辨認物的特異性。TLR9是TLR的一員,它辨認的物質是一種很少出現在脊椎動物基因體的CpG DNA,TLR9除了在對抗病源菌上是很重要的,它也被發現在自體免疫疾病的病程中扮演重要角色;在紅斑性狼瘡的病程上,活化TLR9可以促使plasmacytoid dendritic cell分泌α干擾素(interferon-α)並且讓B細胞的成熟分化而使其產生對身體有害的自體抗體。另一方面,在先前的研究中發現,T helper 1 (Th1) immunity在Pseudomonas aeruginosa所引起的角膜炎病程中也是扮演重要角色,而TLR9的活化會引起強烈的Th1 immunity。所以,我們假設TLR9對於紅斑性狼瘡和P. aeruginosa角膜炎的發生的確是佔很重要的地位,並且研究如果減少TLR9基因表現是否對於這兩種疾病是有療效的。我們藉由Internal ribosome entry site後接green fluorescent protein (IRES-GFP)的方法找出抑制TLR9基因表現最有效的small-hairpin RNA (shRNA),並且將這段shRNA接進vesicular stomatitis virus GP (VSV-G) pseudotyped 的lentivirus產出Lt-shTLR9這隻病毒。從我們的結果得知,Lt-shTLR9可以在活體外有效地抑制TLR9基因的表現,但是,不幸地我們在以汞加速小鼠產生紅斑性狼瘡的模型中,沒有發現Lt-shTLR9對紅斑性狼瘡有任何的療效。而在小鼠P. aeruginosa角膜炎模型方面,我們已經完成它的架構,最近會進行利用Lt-shTLR9治療小鼠P. aeruginosa角膜炎模型的實驗。總而言之,希望我們的研究對於TLR9在自體免疫疾病的地位中,能提供一點小小的線索,並且對於紅斑性狼瘡和P. aeruginosa角膜炎能有新方向的療法。

    In mammals host defense against invading microbial pathogens is elicited by the immune response, which can be broadly categorized into innate and adaptive immunity. The innate immunity discriminates between self and non-self via the family of Toll-like receptors (TLRs), which have been recently identified. TLRs are germ line-encoded non-rearranging receptors and recognize conserved pathogen-associate molecules found in microorganisms but rare or absent in vertebrates. TLR9, one of TLR family, is essential for recognition of CpG DNA, which is usually absent in the vertebrate genome. In addition to pathogen defense, TLR9 is presumably involved in pathogenesis of autoimmune disorders. Activation of TLR9 contributes to systemic lupus erythematosus (SLE) progression by T cell-independent B cell proliferation, pathogenic autoantibody production, and plasmacytoid dendritic cell production of interferon-α. On the other hand, previous studies have provided evidence that T-helper 1 (Th1) immunity is important in the pathogenesis of Pseudomonas aeruginosa keratitis and activation of TLR9 induces a strong Th1 inflammatory response. From these observations, we hypothesized that TLR9 may play a critical role in the pathogenesis of SLE and P. aeruginosa keratitis and investigated whether reduction of TLR9 gene expression may be beneficial in these two diseases. We screened efficient short-hairpin RNA (shTLR9) to knock-down murine TLR9 gene expression by the IRES-GFP system and constructed VSV-G pseudotyped lentiviral vector (Lt-shTLR9) expressing shTLR9 for the delivery of small interfering RNA (siRNA) into mammalian cells. Our results demonstrated that Lt-shTLR9 efficiently knocked down TLR9 gene expression in vitro, but it did not exert therapeutic efficacy mercury-exposed NZBW F1 mice. The murine P. aeruginosa keratitis model was established and the therapeutic efficacy of Lt-shTLR9 on this model will be evaluated in the future. Taken together, our study might provide a clue for TLR9-mediated disease and alternative therapeutic approaches for the treatment of SLE and P. aeruginosa keratitis.

    Abstract I 中文摘要 III Acknowledgement V Table of content VI List of figures IX List of Appendix X Abbreviations XI Introduction 1 Toll-like receptor 9 ……………………………………………. 2 Systemic lupus erythematosus ……………………………...... 3 Pseudomonas aeruginosa keratitis …………………………… 6 RNA interference ……………………………………………... 7 Lentiviral vector ………………………………………………. 8 Aims of the study ……………………………………………… 9 Materials and Methods 11 Materials 11 Plasmids …………………………………………………….. 11 Oligodeoxynucleotides ……………………………………… 12 Cell lines …………………………………………………….. 13 Bacterial strains ……………………………………………… 14 Animals ……………………………………………………… 14 Methods 14 Cell lines and cell culture ……………………………………. 14 Cloning of the cDNA of murine TLR9 ……………………… 15 Plasmid construction and design of TLR9 shRNA ………… 15 Transfection …………………………………………………. 16 RNA isolation and RT-PCR …………………………………. 17 Western blot …………………………………………………. 18 NF-kB luciferase reporter assay …………………………….. 19 Production of lentivirus …………………………………….. 19 Determination of viral titer …………………………………. 20 The mercury-exposed murine models of SLE ………………. 20 Kidney histology …………………………………………….. 21 ELISA for anti-dsDNA IgG …………………………………. 21 Proteinuria …………………………………………………… 22 Bacteria ……………………………………………………… 22 Infection and ocular response ……………………………….. 23 Statistical analysis ………………………………………........ 23 Results 24 Cloning of murine TLR9 DNA ………………………………. 24 Expression of the cloned TLR9 gene ………………………… 24 Screening of effective TLR9-shRNA by an IRES-GFP system …………………………………………………………. 25 Further assay for TLR9-sh722 ……………………………… 26 Production of Lt-shTLR9 and knock-down of TLR9 RNA expression by Lt-shTLR9 ……………………………………. 27 The mercury-exposed murine models of SLE ………………. 27 Administration of Lt-shTLR9 to mercury-exposed lupus mice …………………………………………………………… 28 Establishment of murine P. aeruginosa keratitis ……………. 28 Discussion 30 Reference 34

    Anders,H.J. (2005). A Toll for lupus. Lupus 14, 417-422.
    Anders,H.J., Vielhauer,V., Eis,V., Linde,Y., Kretzler,M., Perez,d.L., Strutz,F., Bauer,S., Rutz,M., Wagner,H., Grone,H.J., and Schlondorff,D. (2004). Activation of toll-like receptor-9 induces progression of renal disease in MRL-Fas(lpr) mice. FASEB J. 18, 534-536.
    Akira,S., Yamamoto,M., and Takeda,K. (2003). Role of adapters in Toll-like receptor signalling. Biochem. Soc. Trans. 31, 637-642.
    Brenner,S. and Malech,H.L. (2003). Current developments in the design of onco-retrovirus and lentivirus vector systems for hematopoietic cell gene therapy. Biochim. Biophys. Acta 1640, 1-24.
    Brummelkamp,T.R., Bernards,R., and Agami,R. (2002). A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550-553.
    Baechler,E.C., Gregersen,P.K., and Behrens,T.W. (2004). The emerging role of interferon in human systemic lupus erythematosus. Curr. Opin. Immunol. 16, 801-807.
    Bauer,S., Kirschning,C.J., Hacker,H., Redecke,V., Hausmann,S., Akira,S., Wagner,H., and Lipford,G.B. (2001). Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc. Natl. Acad. Sci. U. S. A 98, 9237-9242.
    Bagasra,O. and Prilliman,K.R. (2004). RNA interference: the molecular immune system. J. Mol. Histol. 35, 545-553.
    Bagenstose,L.M., Salgame,P., and Monestier,M. (1999). Murine mercury-induced autoimmunity: a model of chemically related autoimmunity in humans. Immunol. Res. 20, 67-78.
    Boule,M.W., Broughton,C., Mackay,F., Akira,S., Marshak-Rothstein,A., and Rifkin,I.R. (2004). Toll-like receptor 9-dependent and -independent dendritic cell activation by chromatin-immunoglobulin G complexes. J. Exp. Med. 199, 1631-1640.
    Christensen,S.R., Kashgarian,M., Alexopoulou,L., Flavell,R.A., Akira,S., and Shlomchik,M.J. (2005). Toll-like receptor 9 controls anti-DNA autoantibody production in murine lupus. J. Exp. Med. 202, 321-331.
    Chen,S.Y., Chen,Y.C., Wang,J.K., Hsu,H.P., Ho,P.S., Chen,Y.C., and Sytwu,H.K. (2003). Early hyperbaric oxygen therapy attenuates disease severity in lupus-prone autoimmune (NZB x NZW) F1 mice. Clin. Immunol. 108, 103-110.
    Cronin,J., Zhang,X.Y., and Reiser,J. (2005). Altering the tropism of lentiviral vectors through pseudotyping. Curr. Gene Ther. 5, 387-398.
    Cooper,G.S., Miller,F.W., and Pandey,J.P. (1999). The role of genetic factors in autoimmune disease: implications for environmental research. Environ. Health Perspect. 107 Suppl 5, 693-700.
    Ehlers,M., Fukuyama,H., McGaha,T.L., Aderem,A., and Ravetch,J.V. (2006). TLR9/MyD88 signaling is required for class switching to pathogenic IgG2a and 2b autoantibodies in SLE. J. Exp. Med. 203, 553-561.
    Elbashir,S.M., Harborth,J., Lendeckel,W., Yalcin,A., Weber,K., and Tuschl,T. (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494-498.
    Fleiszig,S.M. and Evans,D.J. (2002). The pathogenesis of bacterial keratitis: studies with Pseudomonas aeruginosa. Clin. Exp. Optom. 85, 271-278.
    Griem,P. and Gleichmann,E. (1995). Metal ion induced autoimmunity. Curr. Opin. Immunol. 7, 831-838.
    Gilkeson,G.S., Ruiz,P., Pippen,A.M., Alexander,A.L., Lefkowith,J.B., and Pisetsky,D.S. (1996). Modulation of renal disease in autoimmune NZB/NZW mice by immunization with bacterial DNA. J. Exp. Med. 183, 1389-1397.
    Gutierrez-Adrianzen,O.A., Koutouzov,S., Mota,R.M., das Chagas Medeiros,M.M., Bach,J.F., and Campos,H.D. (2006). Diagnostic Value of Anti-Nucleosome Antibodies in the Assessment of Disease Activity of Systemic Lupus Erythematosus: A Prospective Study Comparing Anti-Nucleosome with Anti-dsDNA Antibodies. J. Rheumatol.
    Gottenberg,J.E., Cagnard,N., Lucchesi,C., Letourneur,F., Mistou,S., Lazure,T., Jacques,S., Ba,N., Ittah,M., Lepajolec,C., Labetoulle,M., Ardizzone,M., Sibilia,J., Fournier,C., Chiocchia,G., and Mariette,X. (2006). Activation of IFN pathways and plasmacytoid dendritic cell recruitment in target organs of primary Sjogren's syndrome. Proc. Natl. Acad. Sci. U. S. A 103, 2770-2775.
    Gould,D.J. and Favorov,P. (2003). Vectors for the treatment of autoimmune disease. Gene Ther. 10, 912-927.
    Hazlett,L.D. (2005). Role of innate and adaptive immunity in the pathogenesis of keratitis. Ocul. Immunol. Inflamm. 13, 133-138.
    Hazlett,L.D., McClellan,S., Kwon,B., and Barrett,R. (2000). Increased severity of Pseudomonas aeruginosa corneal infection in strains of mice designated as Th1 versus Th2 responsive. Invest Ophthalmol. Vis. Sci. 41, 805-810.
    Hacker,H., Mischak,H., Miethke,T., Liptay,S., Schmid,R., Sparwasser,T., Heeg,K., Lipford,G.B., and Wagner,H. (1998). CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J. 17, 6230-6240.
    Hemmi,H., Takeuchi,O., Kawai,T., Kaisho,T., Sato,S., Sanjo,H., Matsumoto,M., Hoshino,K., Wagner,H., Takeda,K., and Akira,S. (2000). A Toll-like receptor recognizes bacterial DNA. Nature 408, 740-745.
    Hessel,E.M., Chu,M., Lizcano,J.O., Chang,B., Herman,N., Kell,S.A., Wills-Karp,M., and Coffman,R.L. (2005). Immunostimulatory oligonucleotides block allergic airway inflammation by inhibiting Th2 cell activation and IgE-mediated cytokine induction. J. Exp. Med. 202, 1563-1573.
    Hu,W.S. and Pathak,V.K. (2000). Design of retroviral vectors and helper cells for gene therapy. Pharmacol. Rev. 52, 493-511.
    Huang,X., Barrett,R.P., McClellan,S.A., and Hazlett,L.D. (2005). Silencing Toll-like receptor-9 in Pseudomonas aeruginosa keratitis. Invest Ophthalmol. Vis. Sci. 46, 4209-4216.
    Ishii,K.J., Suzuki,K., Coban,C., Takeshita,F., Itoh,Y., Matoba,H., Kohn,L.D., and Klinman,D.M. (2001). Genomic DNA released by dying cells induces the maturation of APCs. J. Immunol. 167, 2602-2607.
    Isenberg,D. (2004). Anti-dsDNA antibodies: still a useful criterion for patients with systemic lupus erythematosus? Lupus 13 , 881-885.
    Iwakuma,T., Cui,Y., and Chang,L.J. (1999). Self-inactivating lentiviral vectors with U3 and U5 modifications. Virology 261, 120-132.
    Janeway,C.A., Jr. and Medzhitov,R. (2002). Innate immune recognition. Annu. Rev. Immunol. 20, 197-216.
    Johnson,A.C., Heinzel,F.P., Diaconu,E., Sun,Y., Hise,A.G., Golenbock,D., Lass,J.H., and Pearlman,E. (2005). Activation of toll-like receptor (TLR)2, TLR4, and TLR9 in the mammalian cornea induces MyD88-dependent corneal inflammation. Invest Ophthalmol. Vis. Sci. 46, 589-595.
    Kline,J.N., Waldschmidt,T.J., Businga,T.R., Lemish,J.E., Weinstock,J.V., Thorne,P.S., and Krieg,A.M. (1998). Modulation of airway inflammation by CpG oligodeoxynucleotides in a murine model of asthma. J. Immunol. 160, 2555-2559.
    Krieg,A.M. (2002). CpG motifs in bacterial DNA and their immune effects. Annu. Rev. Immunol. 20, 709-760.
    Krieg,A.M. (1995). CpG DNA: a pathogenic factor in systemic lupus erythematosus? J. Clin. Immunol. 15, 284-292.
    Krieg,A.M., Yi,A.K., Matson,S., Waldschmidt,T.J., Bishop,G.A., Teasdale,R., Koretzky,G.A., and Klinman,D.M. (1995). CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374, 546-549.
    Kaisho,T. and Akira,S. (2001). Dendritic-cell function in Toll-like receptor- and MyD88-knockout mice. Trends Immunol. 22, 78-83.
    Kernacki,K.A., Hobden,J.A., Hazlett,L.D., Fridman,R., and Berk,R.S. (1995). In vivo bacterial protease production during Pseudomonas aeruginosa corneal infection. Invest Ophthalmol. Vis. Sci. 36, 1371-1378.
    Kwon,B. and Hazlett,L.D. (1997). Association of CD4+ T cell-dependent keratitis with genetic susceptibility to Pseudomonas aeruginosa ocular infection. J. Immunol. 159, 6283-6290.
    Latz,E., Schoenemeyer,A., Visintin,A., Fitzgerald,K.A., Monks,B.G., Knetter,C.F., Lien,E., Nilsen,N.J., Espevik,T., and Golenbock,D.T. (2004). TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat. Immunol. 5, 190-198.
    Lehnhardt,F.G., Scheid,C., Holtik,U., Burghaus,L., Neveling,M., Impekoven,P., Ruger,A., Hallek,M., Jacobs,A.H., and Rubbert,A. (2006). Autologous blood stem cell transplantation in refractory systemic lupus erythematodes with recurrent longitudinal myelitis and cerebral infarction. Lupus 15, 240-243.
    Leadbetter,E.A., Rifkin,I.R., Hohlbaum,A.M., Beaudette,B.C., Shlomchik,M.J., and Marshak-Rothstein,A. (2002). Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416, 603-607.
    Lecellier,C.H. and Voinnet,O. (2004). RNA silencing: no mercy for viruses? Immunol. Rev. 198, 285-303.
    Lin,L., Gerth,A.J., and Peng,S.L. (2004). CpG DNA redirects class-switching towards "Th1-like" Ig isotype production via TLR9 and MyD88. Eur. J. Immunol. 34, 1483-1487.
    Lyczak,J.B., Cannon,C.L., and Pier,G.B. (2000). Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes. Infect. 2, 1051-1060.
    Manson,J.J. and Rahman,A. (2006). Systemic lupus erythematosus. Orphanet. J. Rare. Dis. 1, 6.
    Marshak-Rothstein,A., Busconi,L., Rifkin,I.R., and Viglianti,G.A. (2004). The stimulation of Toll-like receptors by nuclear antigens: a link between apoptosis and autoimmunity. Rheum. Dis. Clin. North Am. 30, 559-74, ix.
    Medzhitov,R., Preston-Hurlburt,P., and Janeway,C.A., Jr. (1997). A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394-397.
    Means,T.K., Latz,E., Hayashi,F., Murali,M.R., Golenbock,D.T., and Luster,A.D. (2005). Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. J. Clin. Invest 115, 407-417.
    Mittal,V. (2004). Improving the efficiency of RNA interference in mammals. Nat. Rev. Genet. 5, 355-365.
    Miyagishi,M. and Taira,K. (2002). U6 promoter-driven siRNAs with four uridine 3' overhangs efficiently suppress targeted gene expression in mammalian cells. Nat. Biotechnol. 20, 497-500.
    Ohashi,K., Burkart,V., Flohe,S., and Kolb,H. (2000). Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J. Immunol. 164, 558-561.
    Prinz,M., Garbe,F., Schmidt,H., Mildner,A., Gutcher,I., Wolter,K., Piesche,M., Schroers,R., Weiss,E., Kirschning,C.J., Rochford,C.D., Bruck,W., and Becher,B. (2006). Innate immunity mediated by TLR9 modulates pathogenicity in an animal model of multiple sclerosis. J. Clin. Invest 116 , 456-464.
    Pan,D., Gunther,R., Duan,W., Wendell,S., Kaemmerer,W., Kafri,T., Verma,I.M., and Whitley,C.B. (2002). Biodistribution and toxicity studies of VSVG-pseudotyped lentiviral vector after intravenous administration in mice with the observation of in vivo transduction of bone marrow. Mol. Ther. 6, 19-29.
    Pollard,K.M., Pearson,D.L., Hultman,P., Hildebrandt,B., and Kono,D.H. (1999). Lupus-prone mice as models to study xenobiotic-induced acceleration of systemic autoimmunity. Environ. Health Perspect. 107 Suppl 5, 729-735.
    Poltorak,A., He,X., Smirnova,I., Liu,M.Y., Van Huffel,C., Du,X., Birdwell,D., Alejos,E., Silva,M., Galanos,C., Freudenberg,M., Ricciardi-Castagnoli,P., Layton,B., and Beutler,B. (1998). Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085-2088.
    Power,M.R., Peng,Y., Maydanski,E., Marshall,J.S., and Lin,T.J. (2004). The development of early host response to Pseudomonas aeruginosa lung infection is critically dependent on myeloid differentiation factor 88 in mice. J. Biol. Chem. 279, 49315-49322.
    Rahman,A. and Hiepe,F. (2002). Anti-DNA antibodies--overview of assays and clinical correlations. Lupus 11, 770-773.
    Ralph,G.S., Binley,K., Wong,L.F., Azzouz,M., and Mazarakis,N.D. (2006). Gene therapy for neurodegenerative and ocular diseases using lentiviral vectors. Clin. Sci. (Lond) 110, 37-46.
    Rubinson,D.A., Dillon,C.P., Kwiatkowski,A.V., Sievers,C., Yang,L., Kopinja,J., Rooney,D.L., Ihrig,M.M., McManus,M.T., Gertler,F.B., Scott,M.L., and Van Parijs,L. (2003). A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat. Genet. 33, 401-406.
    Rothenfusser,S., Tuma,E., Endres,S., and Hartmann,G. (2002). Plasmacytoid dendritic cells: the key to CpG. Hum. Immunol. 63, 1111-1119.
    Stevenson,M. (2004). Therapeutic potential of RNA interference. N. Engl. J. Med. 351, 1772-1777.
    Steuhl,K.P., Doring,G., Henni,A., Thiel,H.J., and Botzenhart,K. (1987). Relevance of host-derived and bacterial factors in Pseudomonas aeruginosa corneal infections. Invest Ophthalmol. Vis. Sci. 28, 1559-1568.
    Svelander,L., Erlandsson,H.H., Lorentzen,J.C., Trollmo,C., Klareskog,L., and Bucht,A. (2004). Oligodeoxynucleotides containing CpG motifs can induce T cell-dependent arthritis in rats. Arthritis Rheum. 50 , 297-304.
    Suzuki,K., Mori,A., Ishii,K.J., Saito,J., Singer,D.S., Klinman,D.M., Krause,P.R., and Kohn,L.D. (1999). Activation of target-tissue immune-recognition molecules by double-stranded polynucleotides. Proc. Natl. Acad. Sci. U. S. A 96, 2285-2290.
    Schein,O.D., Glynn,R.J., Poggio,E.C., Seddon,J.M., and Kenyon,K.R. (1989). The relative risk of ulcerative keratitis among users of daily-wear and extended-wear soft contact lenses. A case-control study. Microbial Keratitis Study Group. N. Engl. J. Med. 321, 773-778.
    Theofilopoulos,A.N. and Dixon,F.J. (1985). Murine models of systemic lupus erythematosus. Adv. Immunol. 37, 269-390.
    Thomas,C.E., Ehrhardt,A., and Kay,M.A. (2003). Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet. 4, 346-358.
    Takeda,K. and Akira,S. (2005). Toll-like receptors in innate immunity. Int. Immunol. 17, 1-14.
    Takeda,K., Kaisho,T., and Akira,S. (2003). Toll-like receptors. Annu. Rev. Immunol. 21, 335-376.
    Verhoeyen,E. and Cosset,F.L. (2004). Surface-engineering of lentiviral vectors. J. Gene Med. 6 Suppl 1, S83-S94.
    White,S. and Rosen,A. (2003). Apoptosis in systemic lupus erythematosus. Curr. Opin. Rheumatol. 15, 557-562.
    Wadhwa,R., Kaul,S.C., Miyagishi,M., and Taira,K. (2004). Know-how of RNA interference and its applications in research and therapy. Mutat. Res. 567, 71-84.
    Wagner,H. (2002). Interactions between bacterial CpG-DNA and TLR9 bridge innate and adaptive immunity. Curr. Opin. Microbiol. 5, 62-69.
    Wagner,H. (2004). The immunobiology of the TLR9 subfamily. Trends Immunol. 25, 381-386.
    Wiznerowicz,M. and Trono,D. (2003). Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J. Virol. 77, 8957-8961.
    Wu,X. and Peng,S.L. (2006). Toll-like receptor 9 signaling protects against murine lupus. Arthritis Rheum. 54, 336-342.
    Wong,L.F., Goodhead,L., Prat,C., Mitrophanous,K.A., Kingsman,S.M., and Mazarakis,N.D. (2006). Lentivirus-mediated gene transfer to the central nervous system: therapeutic and research applications. Hum. Gene Ther. 17, 1-9.
    Zufferey,R., Dull,T., Mandel,R.J., Bukovsky,A., Quiroz,D., Naldini,L., and Trono,D. (1998). Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J. Virol. 72, 9873-9880.
    Zufferey,R., Nagy,D., Mandel,R.J., Naldini,L., and Trono,D. (1997). Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat. Biotechnol. 15, 871-875.

    下載圖示 校內:2011-09-12公開
    校外:2011-09-12公開
    QR CODE