| 研究生: |
楊宜蓁 Yang, Yi-Cheng |
|---|---|
| 論文名稱: |
探討變異鏈球菌在環境刺激下之生物力學與電化學反應 Study of biomechanical and electrochemical responses of Streptococcus mutans under stressed environment |
| 指導教授: |
劉浩志
Liu, Hao-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 變異鏈球菌 、生物膜 、機械性質量測 |
| 外文關鍵詞: | Streptococcus mutans, electrochemical, mechanical property, scanning probe microscopy |
| 相關次數: | 點閱:94 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
變異鏈球菌 ( Streptococcus mutans ) 是造成口腔疾病的主要原因,此菌體藉由酶的作用 ( enzymatic action ) 將口中碳水化合物轉化成高黏滯性的胞外基質 ( extracellular polymeric substance, EPS )。EPS 由多醣體 ( Polysaccharides ) 組成,使變異鏈球菌附著於牙齒上之後,堆疊而形成生物膜。EPS 的結構具有許多孔洞及孔隙,能容納大量水分,使生物膜內的水分含量佔整體的 97 %,能夠幫助細菌運輸養分及廢物。S. mutans 生物膜對牙齦有許多不良影響,小則蛀牙,大則患上牙周病。形成生物膜的 S. mutans 由於有外層的 EPS 保護,許多抗菌劑無法直接對細菌本體作用而效果大大減低,故想要將 S. mutans 的活性消除,必須先破壞EPS或是找尋不被 EPS 阻擋的殺菌劑。
本實驗使用培養兩天的生物膜,分別以紫外光、微電漿、次氯酸水溶液以及酒精,以不同時間做處理。所使用的分析方法主要為原子力顯微鏡 ( atomic force microscope, AFM ),搭配電化學阻抗 ( electrochemical impedance spectroscope, EIS )、螢光染色等量測,藉由觀察生物膜之表面形貌、機械性質、電學性質及存活率,得到不同殺菌方法下,各種性質的變化。機械性質方面,彈性模數、黏滯力、形變量以及能量耗散分別對應於生物膜的彈性、EPS 含量、硬度 ( stiff ) 以及水分含量;而阻抗量測結果則能夠與水分多寡相對應。我們藉由探討以上數值的變化推測生物膜中 EPS 對不同刺激的反應。另外,使用 AFM 的峰力定量奈米機械性質測量模式 ( peak force quantitative nanomechanical property mapping, peak force QNM ),我們能夠在細菌表面形貌不產生改變時,得知生物膜中 EPS 的變化。藉由電性與螢光染色結果的輔助,我們的論點能更為穩固。
本實驗中利用 AFM的方法可在不傷害細菌的情況下量測生物膜機械性質,得知生物膜中 EPS 的變化。從結果中我們發現,生物膜對紫外光、微電漿、HOCl 及酒精的反應皆不一樣。紫外光能使 EPS 被分解而減少,卻不至於將結構瓦解,因此水分仍可被保留於生物膜中,而此時紫外光已可穿透過 EPS,消滅外層的 S. mutams 活性;EPS 結構被微電漿所產生的反應性物質攻擊而瓦解塌陷,而反應性物質也會因為 EPS 結構豬的孔洞以及孔洞內水分的散失而進入倒生物膜內部,作用於變異鏈球菌;在 HOCl 水溶液中,free chlorine 會與 EPS 反應,使得生物膜中的水分流失,EPS 結構強度下降,此時的 free chlorine 卻已被消耗不少,因此活性消失的 S. mutans 並不多;酒精對生物膜的影響在於消除 EPS 結構中的水分,導致 EPS 結構缺乏支撐而些微塌陷。
本實驗所使用的殺菌方法若欲將生物膜細菌全數消滅,則必須將各種方法交錯使用,或是將處理時間延長。然而,每一種殺菌劑的處理時間都有限制。在未來,期望能研究出有效率的方法,將此方法應用於醫療或工業,除了能治療疾病外,也能改善衛生問題。
In this study, we investigated the physiological status of Streptococcus mutans and extracellular polymeric substance (EPS) under different environmental stress factors such as UV light, micro-plasma, hypochlorous acid and alcohol by atomic force microscopy, electrochemical spectroscopy, and widefield microscopy. The effects of stressed environment were characterized in morphology, mechanical properties, bio-electrochemistry, and viability.
Based on the analysis, we infer that EPS can be damaged by UV light, micro-plasma, hypochlorous acid at various treatment levels. The disruption of EPS structure causes biofilm to lose the ability to transport nutrients and waste products. In our results, UV light, HOCl and plasma have to first disrupt EPS then attack bacteria. UV light reduce EPS and then penetrate into S. mutans, which inactivate S. mutans. The reactive species of plasma can damage the structure of EPS directly. After the free chlorine in HOCl solution react with EPS, EPS and the free chlorine are both consumed. Alcohol can remove most of the water in biofilm, and let the structure of EPS collapse slightly.
In the future, we can either mix each disinfectant to inactivate entire biofilm, or extend the treat time. We expect that these methods can be applied to medical treatments.
[1] Q. Zhong, D. Inniss, K. Kjoller, and V. Elings, "Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy," Surface Science Letters, vol. 290, pp. L688-L692, 1993.
[2] S. Jiang, X. Huang, C. Zhang, Z. Cai, and T. Zou, "Morphological and proteomic analyses of the biofilms generated by Streptococcus mutans isolated from caries-active and caries-free adults," Journal of Dental Sciences, 2015.
[3] J. W. Costerton, Z. Lewandowski, D. E. Caldwell, D. R. Korber, and H. M. Lappin-Scott, "Microbial biofilms," Annual Reviews in Microbiology, vol. 49, pp. 711-745, 1995.
[4] T. Kim, J. Kang, J.-H. Lee, and J. Yoon, "Influence of attached bacteria and biofilm on double-layer capacitance during biofilm monitoring by electrochemical impedance spectroscopy," Water research, vol. 45, pp. 4615-4622, 2011.
[5] B. H. Liu, K.-L. Li, K.-L. Kang, W.-K. Huang, and J.-D. Liao, "In situ biosensing of the nanomechanical property and electrochemical spectroscopy of Streptococcus mutans-containing biofilms," Journal of Physics D: Applied Physics, vol. 46, p. 275401, 2013.
[6] W.-K. Huang, C.-C. Weng, J.-D. Liao, Y.-C. Wang, and S.-F. Chuang, "Capillary-tube-based micro-plasma system for disinfecting dental biofilm," International journal of radiation biology, vol. 89, pp. 364-370, 2013.
[7] C.-C. Weng, J.-D. Liao, H.-H. Chen, T.-Y. Lin, and C.-L. Huang, "Capillary-tube-based oxygen/argon micro-plasma system for the inactivation of bacteria suspended in aqueous solution," International journal of radiation biology, vol. 87, pp. 936-943, 2011.
[8] M. Laroussi, "Low temperature plasma‐based sterilization: overview and state‐of‐the‐art," Plasma processes and polymers, vol. 2, pp. 391-400, 2005.
[9] M. Laroussi and F. Leipold, "Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure," International Journal of Mass Spectrometry, vol. 233, pp. 81-86, 2004.
[10] B. H. Liu, K.-L. Li, W.-K. Huang, and J.-D. Liao, "Nanomechanical probing of the septum and surrounding substances on Streptococcus mutans cells and biofilms," Colloids and Surfaces B: Biointerfaces, vol. 110, pp. 356-362, 2013.
[11] I. W. Sutherland, "Biofilm exopolysaccharides: a strong and sticky framework," Microbiology, vol. 147, pp. 3-9, 2001.
[12] D. Singhal, A. Foreman, J. J. Bardy, and P. J. Wormald, "Staphylococcus aureus biofilms," The Laryngoscope, vol. 121, pp. 1578-1583, 2011.
[13] L. A. Pratt and R. Kolter, "Genetic analyses of bacterial biofilm formation," Current opinion in microbiology, vol. 2, pp. 598-603, 1999.
[14] L. Mathieu, I. Bertrand, Y. Abe, E. Angel, J. Block, S. Skali-Lami, et al., "Drinking water biofilm cohesiveness changes under chlorination or hydrodynamic stress," water research, vol. 55, pp. 175-184, 2014.
[15] J. K. Clarke, "On the bacterial factor in the aetiology of dental caries," British journal of experimental pathology, vol. 5, p. 141, 1924.
[16] S. Hamada and H. D. Slade, "Biology, immunology, and cariogenicity of Streptococcus mutans," Microbiological reviews, vol. 44, p. 331, 1980.
[17] K. Lewis, "Riddle of biofilm resistance," Antimicrobial agents and chemotherapy, vol. 45, pp. 999-1007, 2001.
[18] G. H. Bowden and I. R. Hamilton, "Survival of oral bacteria," Critical Reviews in Oral Biology & Medicine, vol. 9, pp. 54-85, 1998.
[19] D. De Beer, P. Stoodley, F. Roe, and Z. Lewandowski, "Effects of biofilm structures on oxygen distribution and mass transport," Biotechnology and bioengineering, vol. 43, pp. 1131-1138, 1994.
[20] X. Zhang, P. L. Bishop, and M. J. Kupferle, "Measurement of polysaccharides and proteins in biofilm extracellular polymers," Water science and technology, vol. 37, pp. 345-348, 1998.
[21] G. Binnig, C. F. Quate, and C. Gerber, "Atomic Force Microscope," Physical Review Letters, vol. 56, pp. 930-933, 03/03/ 1986.
[22] E. Meyer, H. Heinzelmann, P. Grütter, T. Jung, H. R. Hidber, H. Rudin, et al., "Atomic force microscopy for the study of tribology and adhesion," Thin Solid Films, vol. 181, pp. 527-544, 1989.
[23] M. Doktycz, C. Sullivan, P. Hoyt, D. Pelletier, S. Wu, and D. Allison, "AFM imaging of bacteria in liquid media immobilized on gelatin coated mica surfaces," Ultramicroscopy, vol. 97, pp. 209-216, 2003.
[24] P. Schaer-Zammaretti and J. Ubbink, "Imaging of lactic acid bacteria with AFM—elasticity and adhesion maps and their relationship to biological and structural data," Ultramicroscopy, vol. 97, pp. 199-208, 2003.
[25] R. Pompl, F. Jamitzky, T. Shimizu, B. Steffes, W. Bunk, H.-U. Schmidt, et al., "The effect of low-temperature plasma on bacteria as observed by repeated AFM imaging," New Journal of Physics, vol. 11, p. 115023, 2009.
[26] K.-L. Kang, "變異鏈球菌生物膜的微區阻抗特性研究," 成功大學材料科學及工程學系學位論文, pp. 1-52, 2014.
[27] C. Marcos and I. Rodriguez, "Vermiculites irradiated with ultraviolet radiation," Applied Clay Science, vol. 109–110, pp. 127-135, 6// 2015.
[28] M. O. Elasri and R. V. Miller, "Study of the response of a biofilm bacterial community to UV radiation," Applied and Environmental Microbiology, vol. 65, pp. 2025-2031, 1999.
[29] A. A. D. Bainbridge and D. Y. A. W. Zhang, "Modeling UV-Damage to E. Coli Bacteria," 1996.
[30] A. Kolappan and S. Satheesh, "Efficacy of UV treatment in the management of bacterial adhesion on hard surfaces," Polish Journal of Microbiology, vol. 60, pp. 119-123, 2011.
[31] C.-C. Weng, Y.-T. Wu, J.-D. Liao, C.-Y. Kao, C.-C. Chao, J.-E. Chang, et al., "Inactivation of bacteria by a mixed argon and oxygen micro-plasma as a function of exposure time," International Journal of Radiation Biology, vol. 85, pp. 362-368, 2009.
[32] A. Norman, "The nuclear role in the ultraviolet inactivation of Neurospora conidia," Journal of Cellular and Comparative Physiology, vol. 44, pp. 1-10, 1954.
[33] D. Mendis, M. Rosenberg, and F. Azam, "A note on the possible electrostatic disruption of bacteria," Plasma Science, IEEE Transactions on, vol. 28, pp. 1304-1306, 2000.
[34] M. Laroussi, D. Mendis, and M. Rosenberg, "Plasma interaction with microbes," New Journal of Physics, vol. 5, p. 41, 2003.
[35] T. C. Montie, K. Kelly-Wintenberg, and J. Reece Roth, "An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials," Plasma Science, IEEE Transactions on, vol. 28, pp. 41-50, 2000.
[36] K. Kelly-Wintenberg, A. Hodge, T. Montie, L. Deleanu, D. Sherman, J. R. Roth, et al., "Use of a one atmosphere uniform glow discharge plasma to kill a broad spectrum of microorganisms," Journal of Vacuum Science & Technology A, vol. 17, pp. 1539-1544, 1999.
[37] S. Ikawa, K. Kitano, and S. Hamaguchi, "Effects of pH on Bacterial Inactivation in Aqueous Solutions due to Low‐Temperature Atmospheric Pressure Plasma Application," Plasma Processes and Polymers, vol. 7, pp. 33-42, 2010.
[38] S. Duarte, S. Kuo, R. Murata, C. Chen, D. Saxena, K. Huang, et al., "Air plasma effect on dental disinfection," Physics of Plasmas (1994-present), vol. 18, p. 073503, 2011.
[39] G. Fridman, G. Friedman, A. Gutsol, A. B. Shekhter, V. N. Vasilets, and A. Fridman, "Applied plasma medicine," Plasma Processes and Polymers, vol. 5, pp. 503-533, 2008.
[40] A. B. Shekhter, V. A. Serezhenkov, T. G. Rudenko, A. V. Pekshev, and A. F. Vanin, "Beneficial effect of gaseous nitric oxide on the healing of skin wounds," Nitric oxide, vol. 12, pp. 210-219, 2005.
[41] A. Shekhter, R. Kabisov, A. Pekshev, N. Kozlov, and Y. L. Perov, "Experimental and clinical validation of plasmadynamic therapy of wounds with nitric oxide," Bulletin of experimental biology and medicine, vol. 126, pp. 829-834, 1998.
[42] M. Laroussi, "Low-temperature plasmas for medicine?," Plasma Science, IEEE Transactions on, vol. 37, pp. 714-725, 2009.
[43] M. H. T. Ngo, J. D. Liao, P. L. Shao, C. C. Weng, and C. Y. Chang, "Increased Fibroblast Cell Proliferation and Migration Using Atmospheric N2/Ar Micro‐Plasma for the Stimulated Release of Fibroblast Growth Factor‐7," Plasma Processes and Polymers, vol. 11, pp. 80-88, 2014.
[44] M. H. Ngo Thi, P. L. Shao, J. D. Liao, C. C. K. Lin, and H. K. Yip, "Enhancement of Angiogenesis and Epithelialization Processes in Mice with Burn Wounds through ROS/RNS Signals Generated by Non‐Thermal N2/Ar Micro‐Plasma," Plasma Processes and Polymers, vol. 11, pp. 1076-1088, 2014.
[45] M. Eryilmaz and I. M. Palabiyik, "Hypochlorous Acid-Analytical Methods and Antimicrobial Activity," Tropical Journal of Pharmaceutical Research, vol. 12, pp. 123-126, 2013.
[46] M. W. LeChevallier, C. D. Cawthon, and R. G. Lee, "Inactivation of biofilm bacteria," Applied and environmental Microbiology, vol. 54, pp. 2492-2499, 1988.
[47] H. Jang, Organic chloramines formation and its disinfection efficacy: ProQuest, 2009.
[48] M. W. LeChevallier, A. KwokKeung, and K. Au, Water treatment and pathogen control: process efficiency in achieving safe drinking-water: IWA Publishing, 2004.
[49] W. E. Pereira, Y. Hoyano, R. E. Summons, V. A. Bacon, and A. M. Duffield, "Chlorination studies II. The reaction of aqueous hypochlorous acid with α-amino acids and dipeptides," Biochimica et Biophysica Acta (BBA) - General Subjects, vol. 313, pp. 170-180, 6/30/ 1973.
[50] C. Venkobachar, L. Iyengar, and A. V. S. Prabhakara Rao, "Mechanism of disinfection: Effect of chlorine on cell membrane functions," Water Research, vol. 11, pp. 727-729, // 1977.
[51] A. K. Camper and G. A. McFETERS, "Chlorine injury and the enumeration of waterborne coliform bacteria," Applied and Environmental Microbiology, vol. 37, pp. 633-641, 1979.
[52] C. N. Haas and R. S. Engelbrecht, "Chlorine dynamics during inactivation of coliforms, acid-fast bacteria and yeasts," Water Research, vol. 14, pp. 1749-1757, // 1980.
[53] J. M. Albrich, C. A. McCarthy, and J. K. Hurst, "Biological reactivity of hypochlorous acid: implications for microbicidal mechanisms of leukocyte myeloperoxidase," Proceedings of the National Academy of Sciences, vol. 78, pp. 210-214, 1981.
[54] S. M. McKenna and K. Davies, "The inhibition of bacterial growth by hypochlorous acid. Possible role in the bactericidal activity of phagocytes," Biochem. J, vol. 254, pp. 685-692, 1988.
[55] W. M. Davison, B. Pitts, and P. S. Stewart, "Spatial and temporal patterns of biocide action against Staphylococcus epidermidis biofilms," Antimicrobial agents and chemotherapy, vol. 54, pp. 2920-2927, 2010.
[56] D. E. Helbling and J. M. VanBriesen, "Free chlorine demand and cell survival of microbial suspensions," Water research, vol. 41, pp. 4424-4434, 2007.
[57] M. Serhan Sakarya, M. Necati Gunay, M. Meltem Karakulak, M. Barcin Ozturk, and M. Bulent Ertugrul, "Hypochlorous Acid: An Ideal Wound Care Agent With Powerful Microbicidal, Antibiofilm, and Wound Healing Potency," WOUNDS, vol. 26, pp. 342-350, 2014.
[58] M. W. LeChevallier, C. D. Cawthon, and R. G. Lee, "Factors promoting survival of bacteria in chlorinated water supplies," Applied and Environmental Microbiology, vol. 54, pp. 649-654, 1988.
[59] P. S. Stewart, R. Murga, R. Srinivasan, and D. de Beer, "Biofilm structural heterogeneity visualized by three microscopic methods," Water Research, vol. 29, pp. 2006-2009, 1995.
[60] J. K.-M. Knobloch, M. A. Horstkotte, H. Rohde, P.-M. Kaulfers, and D. Mack, "Alcoholic ingredients in skin disinfectants increase biofilm expression of Staphylococcus epidermidis," Journal of Antimicrobial Chemotherapy, vol. 49, pp. 683-687, 2002.
[61] H. H. Fang, K.-Y. Chan, and L.-C. Xu, "Quantification of bacterial adhesion forces using atomic force microscopy (AFM)," Journal of Microbiological Methods, vol. 40, pp. 89-97, 2000.
[62] A. L. Schofield, T. R. Rudd, D. S. Martin, D. G. Fernig, and C. Edwards, "Real-time monitoring of the development and stability of biofilms of Streptococcus mutans using the quartz crystal microbalance with dissipation monitoring," Biosensors and Bioelectronics, vol. 23, pp. 407-413, 2007.
[63] M. Rodahl, F. Höök, C. Fredriksson, C. A. Keller, A. Krozer, P. Brzezinski, et al., "Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion," Faraday Discussions, vol. 107, pp. 229-246, 1997.
[64] A. Lasia, "Electrochemical impedance spectroscopy and its applications," in Modern aspects of electrochemistry, ed: Springer, 2002, pp. 143-248.
[65] A. Volkov and A. Prokhorov, "Broadband dielectric spectroscopy of solids," Radiophysics and quantum electronics, vol. 46, pp. 657-665, 2003.
[66] C.-y. ZHOU, X.-c. DAI, and Y. HU, "Sterilization conditions for tissue culture of different explants derived from Perilla frutescens (Linn) Britt [J]," Guangxi Agricultural Sciences, vol. 4, p. 005, 2009.