簡易檢索 / 詳目顯示

研究生: 何慈娟
Ho, Tzu-Chuan
論文名稱: 建立和描述登革病毒長期感染的擬人化小鼠模式
To develop and characterize the dengue virus prolonged infection in humanized mouse model
指導教授: 彭貴春
Perng, Guey-Chuen Oscar
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 128
中文關鍵詞: 登革病毒長期性感染擬人化小鼠人類造血幹細胞及前驅細胞神經性疾病
外文關鍵詞: Dengue virus prolonged infection, humanized mouse, human hematopoietic stem and progenitor cells (HSPC), neurological disorder
相關次數: 點閱:124下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 伴隨登革熱急遽地傳播和全球性的流行,此疾病已成全球居民的健康威脅和負擔。登革熱周期性流行是此疾病能急速傳播的重要因子,然而此現象的起因尚不清楚。大部分的登革病毒感染者是無症狀感染者,少部分為有症狀的登革熱患者。許多證據暗示受感染者康復後可能會成為長期帶原者,且病毒可能會存在於宿主的造血幹細胞及前驅細胞或器官內,隨著這些個體在社區的移動,促進登革熱周期性流行。研究登革病毒是否可以長期存在於曾感染個體及這些個體長期感染後的狀況,將能提供一些新的見解來預防登革熱的流行及降低此疾病對全球公眾衛生健康的威脅和負擔。然而長期地追蹤病毒在感染者體內的狀況是相當大的挑戰。擬人化小鼠可以用來了解病毒與人類之間的關係。因此本研究的目的是建立和描述登革病毒長期感染的擬人化小鼠模式。利用三個目標來完成此目的,第一、我們將建立登革病毒長期感染的擬人化小鼠模式;第二、分析會被登革病毒長期感染的細胞; 第三、了解登革病毒長期感染對動物造成的影響。期望藉由此動物模式可以解釋登革病毒長期帶原的可能性及可能的後果;所得重要結果顯示1)我們成功利用擬人化小鼠建立登革病毒長期感染的模式。2)登革病毒長期感染的擬人化小鼠,其血液和器官內的人類造血幹細胞及前驅細胞,都能分離出有感染性的病毒, 3)同時發現登革病毒會全身性感染這些擬人化小鼠。4)長期病毒感染會導致小鼠顯著性表現出神經性疾病症狀。綜合上述研究結果來暗示曾感染者具有成為長期帶原者的能力,且病毒可能長期感染造血及前驅幹細胞或是多種器官,進而透過病媒蚊、輸血、幹細胞及器官移植,幫助登革病毒周期性流行。因此進行移植治療前,須對來自曾感染者的造血幹細胞及前驅細胞和器官,如腎臟或肝臟進行登革病毒的檢測,將是預防登革熱的可行策略。

    With the rapid dissemination and global expansion of dengue virus (DENV), dengue has become a health threat and burden for the residents of the world. Dengue cyclical emergence is a critical factor to contribute to rapid DENV dissemination, and yet the reason is not clearly elucidated. The majority of DENV infected people are asymptomatic, and only a certain percentage of affected subjects develop typical dengue. Cumulative evidence indicates that DENV infected persons may become a carrier, and the virus may reside in hematopoietic stem/ progenitor cells (HSPCs). With the mobility of carries in the community, which could potentially become a hub for the dengue cyclical emergence. Investigating whether DENV can develop a prolonged infection in an infected person and their long-term effects would provide new insights in dengue prevention as well as maneuver the impact of dengue on global public health. However, the major challenge is to prolongedly follow up the status of DENV in infected people. Humanized mice (humice) have been used to study the relationships between the virus and humans. Hence, the goal of this study is to develop and characterize the DENV prolonged infection in humice model. To achieve this goal, three aims were proposed: Aim 1: to develop the DENV prolonged infected humice model; Aim 2: to identify the cell populations that are permissive for DENV in prolongedly infected humice; Aim 3: to document and study the long-term effects in DENV prolongedly infected humice. The cumulative results were following: 1) We successfully established DENV prolonged infected humice; 2) DENV could be recovered from human HSPC in blood and multiple organs of prolonged infected humice; 3) Systemic DENV infection was found in DENV prolonged infected humice; 4) these humice developed signs of neurological disorders. These findings suggest that infected people not only may become DENV carriers but also may be involved in DENV dissemination through the blood transfusion, stem cell or organs transplantations. Therefore, HSPCs and organs such as liver or kidney, prior to transplantation from subjects living in dengue endemic regions should be checked for the DENV, which is one of feasible strategies to prevent and mitigate the spread of the dengue.

    摘 要 I Abstract II 致 謝 IV Contents V List of Tables IX List of Figures X Abbreviation XII Introduction 1 Dengue virus 1 Disease of DENV infection 4 Course of DENV infection 5 DENV transmission 7 Laboratory diagnosis for DENV infection 9 Burden of dengue 9 Dengue cyclical emergence in DENV dissemination 10 The cause of dengue cyclical emergence 10 DENV prolonged infection in host 12 Virus prolonged infection patterns 13 NSG humanized mice 14 Human immunity in NSG humice 16 Dengue challenges and hypothesis 17 Specific aims 18 Materials and Methods 21 A. Materials 21 Animal 21 Cell lines 21 Human specimens 21 Virus 22 List of other materials 22 B. Methods 23 Ethics statement and Humice Generation 23 Engrafted hCD45 detection 23 Human NK cells, monocyte, B cells, T cells and platelets Detection 24 DENV production 25 DENV infected humanized mouse model 25 Health monitoring 26 DENV infected cell populations detection by flow cytometry 26 Human HSPC and MK isolation 27 Virus isolation 28 Single tissue cells and tissue extracted fluids preparation 29 Infectious cell center assay 29 Plaque assay 30 Statistics analysis 30 Results 32 Reconstitution of human WBCs in hu-HUCB-ASID humice 32 Humice were permissive for DENV infection 33 Humice with DENV prolonged infection developed the two types of viral infection 34 Human HSPCs and Mk in WBCs of DENV prolongedly infected humice were infected by DENV 36 Human HSPCs or Mks harbored the DENV in peripheral organs 37 Accumulation of DENV in organs in humice with prolonged infection 39 Weight loss, low survival rate and signs of neurological disorders were found in humice with DENV prolonged infection 40 Discussion 42 General summary 42 New findings in this study 43 Infected immunocompromised individuals can become DENV carriers 47 DENV infected human HSPCs contribute to the DENV system infection 48 DENV can be transmitted by Aedes aegypti or unconventional routes through DENV carriers 49 Signs of neurological disorders are developed in DENV prolonged infected humice 51 The advantage of DENV prolonged infected humice model versus other murine models 51 Linking of DENV prolonged infection to dengue cyclical emergence 52 The role of DENV prolonged infection in dengue epidemic and prevention in Taiwan 53 Linking of findings in DENV prolonged infection to pathogenesis and prevention of coronavirus disease 2019 (COVID‑19) 54 Limitations in our study 56 Applications of DENV prolongedly infected humice model 56 Conclusion 58 References 59 Tables 86 Figures 93 Curriculum Vitae-Tzu Chuan Ho 115 Appendix 119

    1. Perera, R. and Kuhn, R. J., Structural proteomics of dengue virus. Curr Opin Microbiol, 2008. 11(4): p. 369-77.
    2. Burke, D.S. and Monath, T. P., Flavivirus. In: Knipe, D.M. and Howley, P. M., Eds., Field Virology, 4th Edition, Lippincott Williams & Wilkins, Philadelphia, 2001. 852-921.
    3. Rico-Hesse, R., Microevolution and virulence of dengue viruses. Adv Virus Res, 2003. 59: p. 315-41.
    4. Dang, T. T., Pham, M. H., Bui, H. W. and Le, D. V., Whole genome sequencing and genetic variations in several dengue virus type 1 strains from unusual dengue epidemic of 2017 in Vietnam. Virol J, 2020. 17(1): p. 7.
    5. Salvo, M. A., Aliota, M. T., Moncla, L. H., Velez, I. D., Trujillo, A. I., Friedrich, T. C. and Osorio, J. E., Tracking dengue virus type 1 genetic diversity during lineage replacement in an hyperendemic area in Colombia. PLoS One, 2019. 14(3): p. e0212947.
    6. Anez, G., Heisey, D. A., Espina, L.M., Stramer, S. L. and Rios, M., Phylogenetic analysis of dengue virus types 1 and 4 circulating in Puerto Rico and Key West, Florida, during 2010 epidemics. Am J Trop Med Hyg, 2012. 87(3): p. 548-53.
    7. Chew, M.H., Rahman, M.M., and Hussin, S., Molecular epidemiology and phylogenetic analysis of Dengue virus type-1 and 2 isolated in Malaysia. Pak J Med Sci, 2015. 31(3): p. 615-20.
    8. Wang, W. K., Sung, T. L., Lee, C. N., Lin, T. Y. and King, C.C., Sequence diversity of the capsid gene and the nonstructural gene NS2B of dengue-3 virus in vivo. Virology, 2002. 303(1): p. 181-91.
    9. Descloux, E., Cao-Lormeau, V. M., Roche, C., and De Lamballerie, X., Dengue 1 diversity and microevolution, French Polynesia 2001-2006: connection with epidemiology and clinics. PLoS Negl Trop Dis, 2009. 3(8): p. e493.
    10. Wang, W. K., Lin, S. R., Lee, C. M., King, C. C. and Chang, S. C., Dengue type 3 virus in plasma is a population of closely related genomes: quasispecies. J Virol, 2002. 76(9): p. 4662-5.
    11. Armstrong, P. M. and Rico-Hesse, R., Efficiency of dengue serotype 2 virus strains to infect and disseminate in Aedes aegypti. Am J Trop Med Hyg, 2003. 68(5): p. 539-44.
    12. Diamond, M. S., Edgil, D., Roberts, T. G., Lu, B. and Harris, E., Infection of human cells by dengue virus is modulated by different cell types and viral strains. J Virol, 2000. 74(17): p. 7814-23.
    13. Kostyuchenko, V. A., Zhang, Q., Tan, J. L., Ng, T. S.and Lok, S. M., Immature and mature dengue serotype 1 virus structures provide insight into the maturation process. J Virol, 2013. 87(13): p. 7700-7.
    14. Kostyuchenko, V. A., Chew, P. L., Ng, T. S. and Lok, S. M., Near-atomic resolution cryo-electron microscopic structure of dengue serotype 4 virus. J Virol, 2014. 88(1): p. 477-82.
    15. Fibriansah, G., Tan, J. L., Smith, S. A., de Alwis, R., Ng, T. S., Jadi, Lok, S. M., et al., A highly potent human antibody neutralizes dengue virus serotype 3 by binding across three surface proteins. Nat Commun, 2015. 6: p. 6341.
    16. Fibriansah, G., Ng, T. S., Kostyuchenko, V. A., Lee, J., Lee, S., Lok, S. M., et al., Structural changes in dengue virus when exposed to a temperature of 37 degrees C. J Virol, 2013. 87(13): p. 7585-92.
    17. Hsu, A. Y., Wu, S. R., Tsai, J. J., Chen, P. L., Chen, Y. P., Perng, G. C., et al., Infectious dengue vesicles derived from CD61+ cells in acute patient plasma exhibited a diaphanous appearance. Sci Rep, 2015. 5: p. 17990.
    18. Noisakran, S., Onlamoon, N., Songprakhon, P., Hsiao, H. M., Chokephaibulkit, K. and Perng, G. C., Cells in dengue virus infection in vivo. Adv Virol, 2010. 2010: p. 164878.
    19. Guzman, M. G., Gubler, D. J., Izquierdo, A., Martinez, E. and Halstead, S. B., Dengue infection. Nat Rev Dis Primers, 2016. 2: p. 16055.
    20. Clyde, K., Kyle, J.L., and Harris, E., Recent advances in deciphering viral and host determinants of dengue virus replication and pathogenesis. J Virol, 2006. 80(23): p. 11418-31.
    21. Begum, F., Das, S., Mukherjee, D., Mal, S. and Ray, U., Insight into the Tropism of Dengue Virus in Humans. Viruses, 2019. 11(12).
    22. Noisakran, S., Gibbons, R. V., Songprakhon, P., Jairungsri, A., Ajariyakhajorn, C., Perng, G. C. et al., Detection of dengue virus in platelets isolated from dengue patients. Southeast Asian J Trop Med Public Health, 2009. 40(2): p. 253-62.
    23. Rondina, M. T. and Weyrich, A. S., Dengue virus pirates human platelets. Blood, 2015. 126(3): p. 286-7.
    24. Scott, R. M., Nisalak, A., Cheamudon, U., Seridhoranakul S. and Nimmannitya, S., Isolation of dengue viruses from peripheral blood leukocytes of patients with hemorrhagic fever. J Infect Dis, 1980. 141(1): p. 1-6.
    25. Blok, J., Kay, B. H., Hall, R. A. and Gorman, B. M., Isolation and characterization of dengue viruses serotype 1 from an epidemic in northern Queensland, Australia. Arch Virol, 1988. 100(3-4): p. 213-20.
    26. Kittigul, L., Meethien, N., Sujirarat, D., Kittigul, C., and Vasanavat, S., Comparison of dengue virus antigens in sera and peripheral blood mononuclear cells from dengue infected patients. Asian Pac J Allergy Immunol, 1997. 15(4): p. 187-91.
    27. Jessie, K., Fong, M. Y., Devi, S., Lam, S. K. and Wong, K. T., Localization of dengue virus in naturally infected human tissues, by immunohistochemistry and in situ hybridization. J Infect Dis, 2004. 189(8): p. 1411-8.
    28. De Macedo, F. C., Nicol, A. F., Cooper, L. D., Yearsley, M., Pires, A. R. and Nuovo, G. J., Histologic, viral, and molecular correlates of dengue fever infection of the liver using highly sensitive immunohistochemistry. Diagn Mol Pathol, 2006. 15(4): p. 223-8.
    29. Wong, K. L., Chen, W., Balakrishnan, T., Toh, Y. X., Fink, K. and Wong, S. C., Susceptibility and response of human blood monocyte subsets to primary dengue virus infection. PLoS One, 2012. 7(5): p. e36435.
    30. Noisakran, S., Onlamoon, N., Pattanapanyasat, K., Hsiao, H. M., Songprakhon, P., Perng, G. C., et al., Role of CD61+ cells in thrombocytopenia of dengue patients. Int J Hematol, 2012. 96(5): p. 600-10.
    31. Hsu, A. I. Y., Ho, T. C., Lai, M. L., Tan, S. S., Chen, T. Y., Perng, G. C., et al., Identification and characterization of permissive cells to dengue virus infection in human hematopoietic stem and progenitor cells. Transfusion, 2019. 59(9): p. 2938-2951.
    32. Whitehorn, J. and Farrar, J., Dengue. Br Med Bull, 2010. 95: p. 161-73.
    33. World Healthy Organization, Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition. World Health Organization, 2009.
    34. Reiter, P., Yellow fever and dengue: a threat to Europe? Euro Surveill, 2010. 15(10): p. 19509.
    35. Rafique, I., Saqib, M. A. N., Munir, M. A., Qureshi, H., Taseer, I. U., Iqbal, R., Rizwanullah, et al., Asymptomatic dengue infection in adults of major cities of Pakistan. Asian Pac J Trop Med, 2017. 10(10): p. 1002-1006.
    36. Chien, Y. W., Liu, Z. H., Tseng, F. C., Ho, T. C., Guo, H. R., Perng, G. C., et al., Prolonged persistence of IgM against dengue virus detected by commonly used commercial assays. BMC Infect Dis, 2018. 18(1): p. 156.
    37. Chastel, C., Eventual role of asymptomatic cases of dengue for the introduction and spread of dengue viruses in non-endemic regions. Front Physiol, 2012. 3: p. 70.
    38. Duong, V., Lambrechts, L., Paul, R. E., Ly, S., Lay, R. S., Buchy, P., et al., Asymptomatic humans transmit dengue virus to mosquitoes. Proc Natl Acad Sci U S A, 2015. 112(47): p. 14688-93.
    39. Hashmi, A. M., Butt, Z., Idrees, Z., Niazi, M., Yousaf, Z., Bhatti, M. R., et al., Anxiety and depression symptoms in patients with dengue fever and their correlation with symptom severity. Int J Psychiatry Med, 2012. 44(3): p. 199-210.
    40. Yeh, C. Y., Chen, P. L., Chuang, K. T., Shu, Y. C., Chien, Y. W., Ko, N. Y., et al., Symptoms associated with adverse dengue fever prognoses at the time of reporting in the 2015 dengue outbreak in Taiwan. PLoS Negl Trop Dis, 2017. 11(12): p. e0006091.
    41. Gubler, D. J., Dengue and dengue hemorrhagic fever. Clin Microbiol Rev, 1998. 11(3): p. 480-96.
    42. Khetarpal, N. and Khanna, I., Dengue Fever: Causes, Complications, and Vaccine Strategies. J Immunol Res, 2016. 2016: p. 6803098.
    43. Kalayanarooj, S., Clinical Manifestations and Management of Dengue/DHF/DSS. Trop Med Health, 2011. 39(4 Suppl): p. 83-7.
    44. Nogueira, R. M., Zagner, S. M., Martins, I. S., Lampe, E., Miagostovich, M. P. and Schatzmayr, H. G., Dengue haemorrhagic fever/dengue shock syndrome (DHF/DSS) caused by serotype 2 in Brazil. Mem Inst Oswaldo Cruz, 1991. 86(2): p. 269.
    45. Diaz, A., Kouri, G., Guzman, M. G., Lobaina, L., Bravo, J., Martinez, R., et al., Description of the clinical picture of dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS) in adults. Bull Pan Am Health Organ, 1988. 22(2): p. 133-44.
    46. Sumarmo, Wulur, H., Jahja, E., Gubler, D. J., Sutomenggolo, T. S. and Saroso, J. S., Encephalopathy associated with dengue infection. Lancet, 1978. 1(8061): p. 449-50.
    47. Solbrig, M.V. and Perng, G.C., Current neurological observations and complications of dengue virus infection. Curr Neurol Neurosci Rep, 2015. 15(6): p. 29.
    48. Muller, D. A., Depelsenaire, A. C. and Young, P. R., Clinical and Laboratory Diagnosis of Dengue Virus Infection. J Infect Dis, 2017. 215(suppl_2): p. S89-S95.
    49. Khan, M. I. H., Anwar, E., Agha, A., Hassanien, N. S. M., Ullah, E., Syed, I. A. and Raja, A., Factors predicting severe dengue in patients with dengue Fever. Mediterr J Hematol Infect Dis, 2013. 5(1): p. e2013014.
    50. Pozo-Aguilar, J. O., Monroy-Martinez, V., Diaz, D., Barrios-Palacios, J., Ramos, C., Ruiz-Ordaz, B. H., et al., Evaluation of host and viral factors associated with severe dengue based on the 2009 WHO classification. Parasit Vectors, 2014. 7: p. 590.
    51. Vaughn, D. W., Green, S., Kalayanarooj, S., Innis, B. L., Nimmannitya, S., Nisalak, A., et al., Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infect Dis, 2000. 181(1): p. 2-9.
    52. Nguyet, M. N., Duong, T. H., Trung, V. T., Nguyen, T. H., Tran, C. N., Simmons, C. P., et al., Host and viral features of human dengue cases shape the population of infected and infectious Aedes aegypti mosquitoes. Proc Natl Acad Sci U S A, 2013. 110(22): p. 9072-7.
    53. Chan, M. and Johansson, M. A., The incubation periods of Dengue viruses. PLoS One, 2012. 7(11): p. e50972.
    54. Koh, C., Allen, S. L., Herbert, R. I., McGraw, E. A. and Chenoweth, S. F., The Transcriptional Response of Aedes aegypti with Variable Extrinsic Incubation Periods for Dengue Virus. Genome Biol Evol, 2018. 10(12): p. 3141-3151.
    55. Watts, D. M., Burke, D. S., Harrison, B. A., Whitmire, R. E. and Nisalak, A., Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus. Am J Trop Med Hyg, 1987. 36(1): p. 143-52.
    56. Tambyah, P. A., Koay, E. S., Poon, M. L., Lin, R. V., Ong, B. K., and Transfusion-Transmitted Dengue Infection Study Group, et al., Dengue hemorrhagic fever transmitted by blood transfusion. N Engl J Med, 2008. 359(14): p. 1526-7.
    57. Rosso, F., Sanz, A. M., Parra-Lara, L. G., Moncada, P. A., Velez, J. D. and Caicedo, L. A., Dengue Virus Infection in Solid Organ Transplant Recipients: A Case Series and Literature Review. Am J Trop Med Hyg, 2019. 101(6): p. 1226-1231.
    58. Visuthranukul, J., Bunworasate, U., Lawasut, P. and Suankratay, C., Dengue hemorrhagic fever in a peripheral blood stem cell transplant recipient: the first case report. Infect Dis Rep, 2009. 1(1): p. e3.
    59. Barroso, K. S. N., Kaufman, J., Brunetta, D. M., de Carvalho Araujo, F. M. and Barroso-Duarte, F., Dengue encephalitis in allogenic hematopoietic stem cell transplantation recipient. Bone Marrow Transplant, 2017. 52(10): p. 1455-1456.
    60. Punzel, M., Korukluoglu, G., Caglayik, D. Y., Menemenlioglu, D., Bozdag, S. C., Schmidt-Chanasit, J., et al., Dengue virus transmission by blood stem cell donor after travel to Sri Lanka; Germany, 2013. Emerg Infect Dis, 2014. 20(8): p. 1366-9.
    61. Basurko, C., Matheus, S., Hilderal, H., Everhard, S., Restrepo, M., Carles, G., et al., Estimating the Risk of Vertical Transmission of Dengue: A Prospective Study. Am J Trop Med Hyg, 2018. 98(6): p. 1826-1832.
    62. Stramer, S. L., Linnen, J. M., Carrick, J. M., Foster, G. A., Krysztof, D. E., Tomashek, K. M., et al., Dengue viremia in blood donors identified by RNA and detection of dengue transfusion transmission during the 2007 dengue outbreak in Puerto Rico. Transfusion, 2012. 52(8): p. 1657-66.
    63. Busch, M. P., Sabino, E. C., Brambilla, D., Lopes, M. E., Capuani, L., Custer, B., et al., Duration of Dengue Viremia in Blood Donors and Relationships Between Donor Viremia, Infection Incidence and Clinical Case Reports During a Large Epidemic. J Infect Dis, 2016. 214(1): p. 49-54.
    64. Suzuki, Y., Kotoura, M., Yashima, S., Wu, H., Nakano, T. and Sano, K., Measuring Dengue Virus RNA in the Culture Supernatant of Infected Cells by Real-time Quantitative Polymerase Chain Reaction. J Vis Exp, 2018(141).
    65. Wang, W. K., Chao, D. Y., Kao, C. L., Wu, H. C., Liu, Y. C., Li, C. M., King, C. C., et al., High levels of plasma dengue viral load during defervescence in patients with dengue hemorrhagic fever: implications for pathogenesis. Virology, 2003. 305(2): p. 330-8.
    66. De La Cruz Hernandez, S. I., Flores-Aguilar, H., Gonzalez-Mateos, S., Lopez-Martinez, I., Ortiz-Navarrete, V., Ludert, J. E.and Del Angel, R. M., Viral load in patients infected with dengue is modulated by the presence of anti-dengue IgM antibodies. J Clin Virol, 2013. 58(1): p. 258-61.
    67. Thomas, L., Verlaeten, O., Cabie, A., Kaidomar, S., Moravie, V., Martial, J., Cesaire, R. et al., Influence of the dengue serotype, previous dengue infection, and plasma viral load on clinical presentation and outcome during a dengue-2 and dengue-4 co-epidemic. Am J Trop Med Hyg, 2008. 78(6): p. 990-8.
    68. Singla, M., Kar, M., Sethi, T., Kabra, S. K., Lodha, R., Chandele, A. and Medigeshi, G. R., Immune Response to Dengue Virus Infection in Pediatric Patients in New Delhi, India--Association of Viremia, Inflammatory Mediators and Monocytes with Disease Severity. PLoS Negl Trop Dis, 2016. 10(3): p. e0004497.
    69. Xu, Y., Zhao, L. Z., Xu, Y. Z., Gu, J. B., Wu, K., Peng, Z. Q., Chen, X. G., et al., Defervescent dengue patients might be a potential source of infection for vector mosquitoes. Infect Dis Poverty, 2020. 9(1): p. 17.
    70. Gubler, D. J., New Treatment Strategies for Dengue and Other Flaviviral Diseases. Dengue/Dengue haemorrhagic fever and current history, ed. J.A.G. Gregory R. Bock. Vol. 277. 2006: John Wiley & Sons.
    71. Rush, B., Medical inquiries and observations. 2nd ed. 1805, Philadelphia: J. Conrad & Co.
    72. Murray, N. E., Quam, M. B. and Wilder-Smith, A., Epidemiology of dengue: past, present and future prospects. Clin Epidemiol, 2013. 5: p. 299-309.
    73. Bhatt, S., Gething, P. W., Brady, O. J., Messina, J. P., Farlow, A. W., Hay, S. I., et al., The global distribution and burden of dengue. Nature, 2013. 496(7446): p. 504-7.
    74. World Health Organization, Global Strategy for Dengue Prevention and Control, 2012-2020. World Health Organization., 2012.
    75. Iacobucci, G., WHO recommends additional tests for Sanofi's dengue vaccine after safety concerns. BMJ, 2018. 361: p. k1765.
    76. Shepard, D. S., Undurraga, E. A., Halasa, Y. A. and Stanaway, J. D., The global economic burden of dengue: a systematic analysis. Lancet Infect Dis, 2016. 16(8): p. 935-41.
    77. Stanaway, J. D., Shepard, D. S., Undurraga, E. A., Halasa, Y. A., Coffeng, L. E., Murray, C. J., et al., The global burden of dengue: an analysis from the Global Burden of Disease Study 2013. Lancet Infect Dis, 2016. 16(6): p. 712-723.
    78. Araujo, V. E. M., Bezerra, J. M. T., Amancio, F. F. and Passos, Carneiro, M., Increase in the burden of dengue in Brazil and federated units, 2000 and 2015: analysis of the Global Burden of Disease Study 2015. Rev Bras Epidemiol, 2017. 20Suppl 01(Suppl 01): p. 205-216.
    79. 林宜瑩、林巧雯、王仁德、賴俊麟、謝瑞煒和劉碧隆, 登革熱大規模疫情防治因應對策與方法:以2015年臺南市為例. 衛生福利部疾病管制署 疫情報導, 2019. 35(12): p. 7.
    80. 林怜伶、陳主慈、周玉民和楊靖慧, 2013–2017年臺灣公費提供登革熱 NS1 抗原快速診斷試劑政策對通報時效之影響. 衛生福利部疾病管制署 疫情報導, 2019. 35(16): p. 7.
    81. Ooi, E. E., Goh, K.T. and Gubler, D. J., Dengue prevention and 35 years of vector control in Singapore. Emerg Infect Dis, 2006. 12(6): p. 887-93.
    82. Chuang, T. W., Chaves, L. F. and Chen, P. J., Effects of local and regional climatic fluctuations on dengue outbreaks in southern Taiwan. PLoS One, 2017. 12(6): p. e0178698.
    83. Lai, Y. H., The climatic factors affecting dengue fever outbreaks in southern Taiwan: an application of symbolic data analysis. Biomed Eng Online, 2018. 17(Suppl 2): p. 148.
    84. Pratama, I. P. and Rahayu, S., Relationship between urbanization and dengue fever incidence in Semarang city. J. Geomatics and Planning 2016, 2016. 3(1): p. 10.
    85. World Health Organization, DengueNet in India. Wkly Epidemiol Rec, 2004. 79(21): p. 201-3.
    86. Bennett, S. N., Drummond, A. J., Kapan, D. D., Suchard, M. A., Munoz-Jordan, J. L., Gubler, D.J., et al., Epidemic dynamics revealed in dengue evolution. Mol Biol Evol, 2010. 27(4): p. 811-8.
    87. Rajarethinam, J., Ang, L. W., Ong, J., Ycasas, J., Hapuarachchi, H. C., Ng, L. C., et al., Dengue in Singapore from 2004 to 2016: Cyclical Epidemic Patterns Dominated by Serotypes 1 and 2. Am J Trop Med Hyg, 2018. 99(1): p. 204-210.
    88. Mohd-Zaki, A. H., Brett, J., Ismail, E. and L'Azou, M, Epidemiology of dengue disease in Malaysia (2000-2012): a systematic literature review. PLoS Negl Trop Dis, 2014. 8(11): p. e3159.
    89. Cummings, D. A., Irizarry, R. A., Huang, N. E., Endy, T. P., Nisalak, A., Burke, D. S., et al., Travelling waves in the occurrence of dengue haemorrhagic fever in Thailand. Nature, 2004. 427(6972): p. 344-7.
    90. Adams, B., Holmes, E. C., Zhang, C., Mammen, M. P., Jr., Nimmannitya, S., Boots, M., et al., Cross-protective immunity can account for the alternating epidemic pattern of dengue virus serotypes circulating in Bangkok. Proc Natl Acad Sci U S A, 2006. 103(38): p. 14234-9.
    91. Recker, M., Blyuss, K. B., Simmons, C. P., Hien, T. T., Wills, B., Gupta, S., et al., Immunological serotype interactions and their effect on the epidemiological pattern of dengue. Proc Biol Sci, 2009. 276(1667): p. 2541-8.
    92. Johansson, M. A., Dominici, F. and Glass, G. E., Local and global effects of climate on dengue transmission in Puerto Rico. PLoS Negl Trop Dis, 2009. 3(2): p. e382.
    93. Strickman, D. and Kittayapong, P., Dengue and its vectors in Thailand: introduction to the study and seasonal distribution of Aedes larvae. Am J Trop Med Hyg, 2002. 67(3): p. 247-59.
    94. Keating, J., An investigation into the cyclical incidence of dengue fever. Soc Sci Med, 2001. 53(12): p. 1587-97.
    95. Struchiner, C. J., Rocklov, J., Wilder-Smith, A. and Massad, E., Increasing Dengue Incidence in Singapore over the Past 40 Years: Population Growth, Climate and Mobility. PLoS One, 2015. 10(8): p. e0136286.
    96. Matos, D., Tomashek, K. M., Perez-Padilla, J., Munoz-Jordan, J., Hunsperger, E., Stramer, S. L., et al., Probable and possible transfusion-transmitted dengue associated with NS1 antigen-negative but RNA confirmed-positive red blood cells. Transfusion, 2016. 56(1): p. 215-22.
    97. Mohammed, H., Linnen, J. M., Munoz-Jordan, J. L., Tomashek, K., Foster, G., Stramer, S. L., et al., Dengue virus in blood donations, Puerto Rico, 2005. Transfusion, 2008. 48(7): p. 1348-54.
    98. Chien, Y. W., Huang, H. M., Ho, T. C., Tseng, F. C., Ko, N. Y., Perng, G. C., et al., Seroepidemiology of dengue virus infection among adults during the ending phase of a severe dengue epidemic in southern Taiwan, 2015. BMC Infect Dis, 2019. 19(1): p. 338.
    99. Yergolkar, P. N., Cherian, S. S., Jadhav, S., Raut, C. G.and Mourya, D. T., Genetic characterization of dengue virus types 1 and 2 in India, with emphasis on the viruses circulating in Karnataka. Indian J Med Res, 2017. 146(5): p. 662-665.
    100. Dash, P. K., Sharma, S., Soni, M., Agarwal, A., Sahni, A. K. and Parida, M., Complete genome sequencing and evolutionary phylogeography analysis of Indian isolates of Dengue virus type 1. Virus Res, 2015. 195: p. 124-34.
    101. Lee, K. S., Lo, S., Tan, S. S., Chua, R., Tan, L. K., Ng, L. C., et al., Dengue virus surveillance in Singapore reveals high viral diversity through multiple introductions and in situ evolution. Infect Genet Evol, 2012. 12(1): p. 77-85.
    102. Zaltron, S., Spinetti, A., Biasi, L., Baiguera, C. and Castelli, F., Chronic HCV infection: epidemiological and clinical relevance. BMC Infect Dis, 2012. 12 Suppl 2: p. S2.
    103. Weller, I. V., Carne, C. A., Sattentau, Q., Smith, A., Tedder, R. S., Adler, M. W., et al., Human immunodeficiency virus (HIV) infection in the regular sexual partners of homosexual men with AIDS and persistent generalised lymphadenopathy. J Med Virol, 1987. 22(1): p. 91-8.
    104. Igarashi, A., Characteristics of Aedes albopictus cells persistently infected with dengue viruses. Nature, 1979. 280(5724): p. 690-1.
    105. Reyes-Ruiz, J. M., Osuna-Ramos, J. F., Bautista-Carbajal, P., Jaworski, E., Soto-Acosta, R., Salas-Benito, J. S., et al., Mosquito cells persistently infected with dengue virus produce viral particles with host-dependent replication. Virology, 2019. 531: p. 1-18.
    106. Rahayu, A., Saraswati, U., Supriyati, E., Kumalawati, D. A., Hermantara, R., Arguni, E., et al., Prevalence and Distribution of Dengue Virus in Aedes aegypti in Yogyakarta City before Deployment of Wolbachia Infected Aedes aegypti. Int J Environ Res Public Health, 2019. 16(10).
    107. Chung, Y. K. and Pang, F. Y., Dengue virus infection rate in field populations of female Aedes aegypti and Aedes albopictus in Singapore. Trop Med Int Health, 2002. 7(4): p. 322-30.
    108. Chen, C. F., Shu, P. Y., Teng, H. J., Su, C. L., Wu, J. W., Wu, H. S., et al., Screening of dengue virus in field-caught Aedes aegypti and Aedes albopictus (Diptera: Culicidae) by one-step SYBR green-based reverse transcriptase-polymerase chain reaction assay during 2004-2007 in Southern Taiwan. Vector Borne Zoonotic Dis, 2010. 10(10): p. 1017-25.
    109. Takasaki, T., Takada, K. and Kurane, I., Electron microscopic study of persistent dengue virus infection: analysis using a cell line persistently infected with Dengue-2 virus. Intervirology, 2001. 44(1): p. 48-54.
    110. Beasley, A. R., Lichter, W. and Sigel, M.M., Studies on latent infections of tissue cultures with dengue virus. I. Characteristics of the system. Arch Gesamte Virusforsch, 1961. 10: p. 672-83.
    111. Beasley, A. R., Wellings, F. M., Sigel, M. M. and Williams, J. A., Studies on Latent Infections of Tissue Cultures with Dengue Virus. Ii. Alterations in the Virus. Arch Gesamte Virusforsch, 1964. 14: p. 412-21.
    112. Hotta, S. and Evans, C. A., Cultivation of mouse-adapted dengue virus (type 1) in rhesus monkey tissue culture. J Infect Dis, 1956. 98(1): p. 88-97.
    113. Garcia, G., Gonzalez, N., Perez, A. B., Sierra, B., Aguirre, E., Guzman, M. G., et al., Long-term persistence of clinical symptoms in dengue-infected persons and its association with immunological disorders. Int J Infect Dis, 2011. 15(1): p. e38-43.
    114. Zaki, S. A. and Shanbag, P., Persistent thrombocytopenia following dengue shock syndrome. Indian J Pediatr, 2009. 76(6): p. 659; author reply 659.
    115. Tiga, D. C., Undurraga, E. A., Ramos-Castaneda, J., Martinez-Vega, R. A., Tschampl, C. A. and Shepard, D. S., Persistent Symptoms of Dengue: Estimates of the Incremental Disease and Economic Burden in Mexico. Am J Trop Med Hyg, 2016. 94(5): p. 1085-1089.
    116. Bordini, C. A. and Valenca, M. M., Post-Dengue New Daily Persistent Headache. Headache, 2017. 57(9): p. 1449-1450.
    117. Joob, B. and Wiwanitkit, V., Post-Dengue New Daily Persistent Headache: Comment. Headache, 2017. 57(10): p. 1621.
    118. de Abreu, L. V., Oliveira, C. B., Bordini, C. A. and Valenca, M. M., New Daily Persistent Headache Following Dengue Fever: Report of Three Cases and an Epidemiological Study. Headache, 2020. 60(1): p. 265-268.
    119. Halsey, E. S., Williams, M., Laguna-Torres, V. A., Vilcarromero, S., Ocana, V. and Marks, M. A., Occurrence and correlates of symptom persistence following acute dengue fever in Peru. Am J Trop Med Hyg, 2014. 90(3): p. 449-56.
    120. Tiga-Loza, D. C., Martinez-Vega, R. A., Undurraga, E. A., Tschampl, C. A., Shepard, D. S. and Ramos-Castaneda, J., Persistence of symptoms in dengue patients: a clinical cohort study. Trans R Soc Trop Med Hyg, 2020. 114(5): p. 355-364.
    121. Boldogh, I., Albrecht, T. and Porter, D. D., Persistent Viral Infections, in Medical Microbiology, th and S. Baron, Editors. 1996: Galveston (TX).
    122. Ruffner, M. A., Sullivan, K. E. and Henrickson, S. E., Recurrent and Sustained Viral Infections in Primary Immunodeficiencies. Front Immunol, 2017. 8: p. 665.
    123. Virgin, H. W., Wherry, E. J. and Ahmed, R., Redefining chronic viral infection. Cell, 2009. 138(1): p. 30-50.
    124. Zompi, S. and Harris, E., Animal models of dengue virus infection. Viruses, 2012. 4(1): p. 62-82.
    125. Martina, B. E., Koraka, P. and Osterhaus, A. D., Dengue virus pathogenesis: an integrated view. Clin Microbiol Rev, 2009. 22(4): p. 564-81.
    126. Yong, K. S. M., Her, Z. and Chen, Q., Humanized Mice as Unique Tools for Human-Specific Studies. Arch Immunol Ther Exp (Warsz), 2018. 66(4): p. 245-266.
    127. Allen, T. M., Brehm, M. A., Bridges, S., Ferguson, S., Kumar, P., PrabhuDas, M., et al., Humanized immune system mouse models: progress, challenges and opportunities. Nat Immunol, 2019. 20(7): p. 770-774.
    128. Krishnakumar, V., Durairajan, S. S. K., Alagarasu, K., Li, M. and Dash, A. P., Recent Updates on Mouse Models for Human Immunodeficiency, Influenza, and Dengue Viral Infections. Viruses, 2019. 11(3).
    129. Sridharan, A., Chen, Q., Tang, K. F., Ooi, E. E., Hibberd, M. L. and Chen, J., Inhibition of megakaryocyte development in the bone marrow underlies dengue virus-induced thrombocytopenia in humanized mice. J Virol, 2013. 87(21): p. 11648-58.
    130. Lee, J. Y., Han, A. R. and Lee, D. R., T Lymphocyte Development and Activation in Humanized Mouse Model. Dev Reprod, 2019. 23(2): p. 79-92.
    131. Ishikawa, F., Yasukawa, M., Lyons, B., Yoshida, S., Miyamoto, T., Harada, M., et al., Development of functional human blood and immune systems in NOD/SCID/IL2 receptor {gamma} chain(null) mice. Blood, 2005. 106(5): p. 1565-73.
    132. Ishikawa, Y., Usui, T., Shiomi, A., Shimizu, M., Murakami, K. and Mimori, T., Functional engraftment of human peripheral T and B cells and sustained production of autoantibodies in NOD/LtSzscid/IL-2Rgamma(-/-) mice. Eur J Immunol, 2014. 44(11): p. 3453-63.
    133. Ong, L. M., Fan, X., Chu, P. P., Gay, F. P., Bari, S., Hwang, W. Y., et al., Cotransplantation of ex vivo expanded and unexpanded cord blood units in immunodeficient mice using insulin growth factor binding protein-2-augmented mesenchymal cell cocultures. Biol Blood Marrow Transplant, 2012. 18(5): p. 674-82.
    134. Mota, J. and Rico-Hesse, R., Dengue virus tropism in humanized mice recapitulates human dengue fever. PLoS One, 2011. 6(6): p. e20762.
    135. Mota, J. and Rico-Hesse, R., Humanized mice show clinical signs of dengue fever according to infecting virus genotype. J Virol, 2009. 83(17): p. 8638-45.
    136. King, M., Pearson, T., Shultz, L. D., Leif, J., Bottino, R., Greiner, D. L., et al., A new Hu-PBL model for the study of human islet alloreactivity based on NOD-scid mice bearing a targeted mutation in the IL-2 receptor gamma chain gene. Clin Immunol, 2008. 126(3): p. 303-14.
    137. Ali, N., Flutter, B., Sanchez Rodriguez, R., Sharif-Paghaleh, E., Barber, L. D., Lombardi, G. and Nestle, F. O., Xenogeneic graft-versus-host-disease in NOD-scid IL-2Rgammanull mice display a T-effector memory phenotype. PLoS One, 2012. 7(8): p. e44219.
    138. King, M. A., Covassin, L., Brehm, M. A., Racki, W., Pearson, T., Greiner, D. L., et al., Human peripheral blood leucocyte non-obese diabetic-severe combined immunodeficiency interleukin-2 receptor gamma chain gene mouse model of xenogeneic graft-versus-host-like disease and the role of host major histocompatibility complex. Clin Exp Immunol, 2009. 157(1): p. 104-18.
    139. Uckun, F. M., Cahn, P., Qazi, S. and D'Cruz, O., Stampidine as a promising antiretroviral drug candidate for pre-exposure prophylaxis against sexually transmitted HIV/AIDS. Expert Opin Investig Drugs, 2012. 21(4): p. 489-500.
    140. Zhang, W., Tong, X., Nakasone, T., Yue, X. T., Yamamoto, Yang, R. G., et al., Activity of superior interferon alpha against HIV-1 in severe combined immunodeficient mice reconstituted with human peripheral blood leukocytes. Chin Med J (Engl), 2011. 124(3): p. 396-400.
    141. Zhang, L., Meissner, E., Chen, J. and Su, L., Current humanized mouse models for studying human immunology and HIV-1 immuno-pathogenesis. Sci China Life Sci, 2010. 53(2): p. 195-203.
    142. Nicoletti, F., Lapenta, C., Donati, S., Spada, M., Ranazzi, A., Aquaro, S., et al., Inhibition of human immunodeficiency virus (HIV-1) infection in human peripheral blood leucocytes-SCID reconstituted mice by rapamycin. Clin Exp Immunol, 2009. 155(1): p. 28-34.
    143. Kim, K. C., Choi, B. S., Kim, K. C., Park, K. H., Lee, H. J., Kim, Y. B., et al., A Simple Mouse Model for the Study of Human Immunodeficiency Virus. AIDS Res Hum Retroviruses, 2016. 32(2): p. 194-202.
    144. Thomas, T., Seay, K., Zheng, J. H., Zhang, C., Ochsenbauer, C., Goldstein, H., et al., High-Throughput Humanized Mouse Models for Evaluation of HIV-1 Therapeutics and Pathogenesis. Methods Mol Biol, 2016. 1354: p. 221-35.
    145. 財團法人國家實驗研究院國家實驗動物中心, Advanced Severe Immuno-Deficiency (ASID) 小鼠六大優勢. https://www.nlac.narl.org.tw/asid/index.asp, 2016.
    146. Marodon, G., Desjardins, D., Mercey, L., Baillou, C., Parent, P., Klatzmann, D., et al., High diversity of the immune repertoire in humanized NOD.SCID.gamma c-/- mice. Eur J Immunol, 2009. 39(8): p. 2136-45.
    147. Jaiswal, S., Pearson, T., Friberg, H., Shultz, L. D., Greiner, D. L., Mathew, A., et al., Dengue virus infection and virus-specific HLA-A2 restricted immune responses in humanized NOD-scid IL2rgammanull mice. PLoS One, 2009. 4(10): p. e7251.
    148. Suzuki, M., Takahashi, T., Katano, I., Ito, R., Ito, M., Sugamura, K., et al., Induction of human humoral immune responses in a novel HLA-DR-expressing transgenic NOD/Shi-scid/gammacnull mouse. Int Immunol, 2012. 24(4): p. 243-52.
    149. Seung, E. and Tager, A. M., Humoral immunity in humanized mice: a work in progress. J Infect Dis, 2013. 208 Suppl 2: p. S155-9.
    150. Brehm, M. A., Cuthbert, A., Yang, C., Miller, D. M., DiIorio, P., Greiner, D. L., et al., Parameters for establishing humanized mouse models to study human immunity: analysis of human hematopoietic stem cell engraftment in three immunodeficient strains of mice bearing the IL2rgamma(null) mutation. Clin Immunol, 2010. 135(1): p. 84-98.
    151. Sim, S., Ramirez, J. L. and Dimopoulos, G., Dengue virus infection of the Aedes aegypti salivary gland and chemosensory apparatus induces genes that modulate infection and blood-feeding behavior. PLoS Pathog, 2012. 8(3): p. e1002631.
    152. Raquin, V. and Lambrechts, L., Dengue virus replicates and accumulates in Aedes aegypti salivary glands. Virology, 2017. 507: p. 75-81.
    153. Kane, M. and Golovkina, T., Common threads in persistent viral infections. J Virol, 2010. 84(9): p. 4116-23.
    154. Hayakawa, J., Hsieh, M. M., Uchida, N., Phang, O. and Tisdale, J. F., Busulfan produces efficient human cell engraftment in NOD/LtSz-Scid IL2Rgamma(null) mice. Stem Cells, 2009. 27(1): p. 175-82.
    155. Golde, W. T., Gollobin, P. and Rodriguez, L. L., A rapid, simple, and humane method for submandibular bleeding of mice using a lancet. Lab Animal, 2005. 34(9): p. 39-43.
    156. Tsai, T. T., Chen, C. L., Lin, Y. S., Chang, C. P., Tsai, C. C., Lin, C. F., et al., Microglia retard dengue virus-induced acute viral encephalitis. Sci Rep, 2016. 6: p. 27670.
    157. Dutta, S. K. and Myrup, A. C., Infectious center assay of intracellular virus and infective virus titer for equine mononuclear cells infected in vivo and in vitro with equine herpesviruses. Can J Comp Med, 1983. 47(1): p. 64-9.
    158. Rongvaux, A., Willinger, T., Takizawa, H., Rathinam, C., Auerbach, W., Flavell, R. A., et al., Human thrombopoietin knockin mice efficiently support human hematopoiesis in vivo. Proc Natl Acad Sci U S A, 2011. 108(6): p. 2378-83.
    159. Mattia, G., Milazzo, L., Vulcano, F., Pascuccio, M., Macioce, G., Hassan, H. J. and Giampaolo, A., Long-term platelet production assessed in NOD/SCID mice injected with cord blood CD34+ cells, thrombopoietin-amplified in clinical grade serum-free culture. Exp Hematol, 2008. 36(2): p. 244-52.
    160. Hu, Z. and Yang, Y. G., Full reconstitution of human platelets in humanized mice after macrophage depletion. Blood, 2012. 120(8): p. 1713-6.
    161. Hamlin, R. E., Rahman, A., Pak, T. R., Maringer, K., Mena, I., Fernandez-Sesma, A., et al., High-dimensional CyTOF analysis of dengue virus-infected human DCs reveals distinct viral signatures. JCI Insight, 2017. 2(13).
    162. Cui, L., Hou, J., Fang, J., Lee, Y. H., Costa, V. V., Ong, C. N., et al., Serum Metabolomics Investigation of Humanized Mouse Model of Dengue Virus Infection. J Virol, 2017. 91(14).
    163. Banerjee, P., Crawford, L., Samuelson, E. and Feuer, G., Hematopoietic stem cells and retroviral infection. Retrovirology, 2010. 7: p. 8.
    164. Vogt, M. B., Lahon, A., Arya, R. P., Spencer Clinton, J. L. and Rico-Hesse, R., Dengue viruses infect human megakaryocytes, with probable clinical consequences. PLoS Negl Trop Dis, 2019. 13(11): p. e0007837.
    165. Sarathy, V. V., White, M., Li, L., Kaiser, J. A., Campbell, G. A., Milligan, G. N., Barrett, A. D. T., et al., Characterization of a murine model of non-lethal, symptomatic dengue virus infection. Sci Rep, 2018. 8(1): p. 4900.
    166. Sarathy, V. V., Infante, E., Li, L., Campbell, G. A., Wang, T., Paessler, S., Barrett, A. D. T., et al., Characterization of lethal dengue virus type 4 (DENV-4) TVP-376 infection in mice lacking both IFN-alpha/beta and IFN-gamma receptors (AG129) and comparison with the DENV-2 AG129 mouse model. J Gen Virol, 2015. 96(10): p. 3035-3048.
    167. Sarathy, V. V., White, M., Li, L., Gorder, S. R., Pyles, R. B., Campbell, G. A., Barrett, A. D., et al., A lethal murine infection model for dengue virus 3 in AG129 mice deficient in type I and II interferon receptors leads to systemic disease. J Virol, 2015. 89(2): p. 1254-66.
    168. Milligan, G. N., Sarathy, V. V., White, M. M., Greenberg, M. B., Campbell, G. A., Pyles, R. B., Bourne, N., et al., A lethal model of disseminated dengue virus type 1 infection in AG129 mice. J Gen Virol, 2017. 98(10): p. 2507-2519.
    169. Milligan, G. N., Sarathy, V. V., Infante, E., Li, L., Campbell, G. A., Beatty, P. R., Harris, E. and Bourne, N., et al., A Dengue Virus Type 4 Model of Disseminated Lethal Infection in AG129 Mice. PLoS One, 2015. 10(5): p. e0125476.
    170. Li, G. H., Ning, Z. J., Liu, Y. M. and Li, X. H., Neurological Manifestations of Dengue Infection. Front Cell Infect Microbiol, 2017. 7: p. 449.
    171. Nogueira, R. M., Filippis, A. M., Coelho, J. M., Sequeira, P. C., Schatzmayr, H. G., Miagostovich, M. P., et al., Dengue virus infection of the central nervous system (CNS): a case report from Brazil. Southeast Asian J Trop Med Public Health, 2002. 33(1): p. 68-71.
    172. Oliveira, E. R., Amorim, J. F., Paes, M. V., Azevedo, A. S., Goncalves, A. J., Alves, A. M., et al., Peripheral effects induced in BALB/c mice infected with DENV by the intracerebral route. Virology, 2016. 489: p. 95-107.
    173. Lin, Y. L., Liao, C. L., Chen, L. K., Yeh, C. T., Liu, C. I., Ma, S. H. and King, C. C., et al., Study of Dengue virus infection in SCID mice engrafted with human K562 cells. J Virol, 1998. 72(12): p. 9729-37.
    174. An, J., Kimura-Kuroda, J., Hirabayashi, Y. and Yasui, K., Development of a novel mouse model for dengue virus infection. Virology, 1999. 263(1): p. 70-7.
    175. Morrey, J. D., Oliveira, A. L. R., Wang, H., Zukor, K., de Castro, M. V. and Siddharthan, V., Zika virus infection causes temporary paralysis in adult mice with motor neuron synaptic retraction and evidence for proximal peripheral neuropathy. Sci Rep, 2019. 9(1): p. 19531.
    176. van der Linden, V., Lins, O. G., de Lima Petribu, N. C., de Melo, Acmg, Moore, J., Rasmussen, S. A. and Moore, C. A., Diaphragmatic paralysis: Evaluation in infants with congenital Zika syndrome. Birth Defects Res, 2019. 111(19): p. 1577-1583.
    177. Jurado, K. A., Yockey, L. J., Wong, P. W., Lee, S., Huttner, A. J., Iwasaki, A., Antiviral CD8 T cells induce Zika-virus-associated paralysis in mice. Nat Microbiol, 2018. 3(2): p. 141-147.
    178. Craig, A. T., Butler, M. T., Pastore, R., Paterson, B. J. and Durrheim, D. N. Acute flaccid paralysis incidence and Zika virus surveillance, Pacific Islands. Bull World Health Organ, 2017. 95(1): p. 69-75.
    179. Balsitis, S. J., Coloma, J., Castro, G., Alava, A., Flores, D., Harris, E., et al., Tropism of dengue virus in mice and humans defined by viral nonstructural protein 3-specific immunostaining. Am J Trop Med Hyg, 2009. 80(3): p. 416-24.
    180. Houghtelin, A. and Bollard, C. M., Virus-Specific T Cells for the Immunocompromised Patient. Front Immunol, 2017. 8: p. 1272.
    181. Walton, S., Mandaric, S. and Oxenius, A., CD4 T cell responses in latent and chronic viral infections. Front Immunol, 2013. 4: p. 105.
    182. Murray, K. O., Kolodziej, S., Ronca, S. E., Gorchakov, R., Navarro, P., Mandayam, S., et al., Visualization of West Nile Virus in Urine Sediment using Electron Microscopy and Immunogold up to Nine Years Postinfection. Am J Trop Med Hyg, 2017. 97(6): p. 1913-1919.
    183. Murray, K., Walker, C., Herrington, E., Lewis, J. A., Mc-Cormick, J., Fisher-Hoch, S., et al., Persistent infection with West Nile virus years after initial infection. J Infect Dis, 2010. 201(1): p. 2-4.
    184. Ng, K. H., Zhang, S. L., Tan, H. C., Kwek, S. S., Sessions, O. M., Chan, C. Y., Yap, H. K., et al., Persistent Dengue Infection in an Immunosuppressed Patient Reveals the Roles of Humoral and Cellular Immune Responses in Virus Clearance. Cell Host Microbe, 2019. 26(5): p. 601-605 e3.
    185. de Souza Pereira, B. B., Darrigo Junior, L. G., de Mello Costa, T. C., Felix, A. C., Simoes, B. P., Stracieri, A. B., Machado, C. M., et al., Prolonged viremia in dengue virus infection in hematopoietic stem cell transplant recipients and patients with hematological malignancies. Transpl Infect Dis, 2017. 19(4).
    186. Abkowitz, J. L., Catlin, S. N., McCallie, M. T. and Guttorp, P., Evidence that the number of hematopoietic stem cells per animal is conserved in mammals. Blood, 2002. 100(7): p. 2665-7.
    187. Massberg, S., Schaerli, P., Knezevic-Maramica, I., Kollnberger, M., Tubo, N., Moseman, E. A., von Andrian, U. H., et al., Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell, 2007. 131(5): p. 994-1008.
    188. Skirecki, T., Mikaszewska-Sokolewicz, M., Godlewska, M., Dolegowska, B., Czubak, J., Hoser, G., Zielinska-Borkowska, U., et al., Mobilization of Stem and Progenitor Cells in Septic Shock Patients. Sci Rep, 2019. 9(1): p. 3289.
    189. Wojakowski, W., Landmesser, U., Bachowski, R., Jadczyk, T. and Tendera, M., Mobilization of stem and progenitor cells in cardiovascular diseases. Leukemia, 2012. 26(1): p. 23-33.
    190. Martino, M., Moscato, T., Barilla, S., Dattola, A., Pontari, A., Fedele, R., Tripepi, G. et al., Mobilization of hematopoietic progenitor stem cells in allogeneic setting with lenograstim by subcutaneous injection, in daily or twice-daily dosing: a single-center prospective study with historical control. Transfusion, 2015. 55(8): p. 2032-8.
    191. Lu, X. J., Chen, Q., Rong, Y. J. and Chen, J., Mobilisation and dysfunction of haematopoietic stem/progenitor cells after Listonella anguillarum infection in ayu, Plecoglossus altivelis. Sci Rep, 2016. 6: p. 28082.
    192. Kavanagh, D. P. and Kalia, N., Hematopoietic stem cell homing to injured tissues. Stem Cell Rev Rep, 2011. 7(3): p. 672-82.
    193. Novelo, M., Hall, M. D., Pak, D., Young, P. R., Holmes, E. C. and McGraw, E. A., Intra-host growth kinetics of dengue virus in the mosquito Aedes aegypti. PLoS Pathog, 2019. 15(12): p. e1008218.
    194. Foy, B. D., Kobylinski, K. C., Chilson Foy, J. L., Blitvich, B. J., Travassos da Rosa, A., Haddow, A. D., Tesh, R. B., et al., Probable non-vector-borne transmission of Zika virus, Colorado, USA. Emerg Infect Dis, 2011. 17(5): p. 880-2.
    195. Foy, B. D., Kobylinski, K. C., Chilson Foy, J. L., Blitvich, B. J., Travassos da Rosa, A., Haddow, A. D., Tesh, R. B., et al., Potential sexual transmission of Zika virus. Emerg Infect Dis, 2015. 21(2): p. 359-61.
    196. Thisyakorn, U., Thisyakorn, C., Limpitikul, W. and Nisalak, A., Dengue infection with central nervous system manifestations. Southeast Asian J Trop Med Public Health, 1999. 30(3): p. 504-6.
    197. Miagostovich, M. P., dos Santos, F. B., Fumian, T. M., Guimaraes, F. R., da Costa, E. V., Tavares, F. N., Nogueira, R. M., et al., Complete genetic characterization of a Brazilian dengue virus type 3 strain isolated from a fatal outcome. Mem Inst Oswaldo Cruz, 2006. 101(3): p. 307-13.
    198. Lum, L. C., Lam, S. K., Choy, Y. S., George, R. and Harun, F., Dengue encephalitis: a true entity? Am J Trop Med Hyg, 1996. 54(3): p. 256-9.
    199. Miagostovich, M. P., dos Santos, F. B., Fumian, T. M., Guimaraes, F. R., da Costa, E. V., Tavares, F. N., Nogueira, R. M., et al., Chronic Dengue Virus Panencephalitis in a Patient with Progressive Dementia with Extrapyramidal Features. Ann Neurol, 2019. 86(5): p. 695-703.
    200. Chen, H. C., Hofman, F. M., Kung, J. T., Lin, Y. D. and Wu-Hsieh, B. A., Both virus and tumor necrosis factor alpha are critical for endothelium damage in a mouse model of dengue virus-induced hemorrhage. J Virol, 2007. 81(11): p. 5518-26.
    201. Chen, H. C., Lai, S. Y., Sung, J. M., Lee, S. H., Lin, Y. C., Wang, W. K., Wu-Hsieh, B. A., et al., Lymphocyte activation and hepatic cellular infiltration in immunocompetent mice infected by dengue virus. J Med Virol, 2004. 73(3): p. 419-31.
    202. Paes, M. V., Pinhao, A. T., Barreto, D. F., Costa, S. M., Oliveira, M. P., Nogueira, A. C., Barth, O. M., et al., Liver injury and viremia in mice infected with dengue-2 virus. Virology, 2005. 338(2): p. 236-46.
    203. Che, S. T., Lin, Y. L. Lin, Huang, M. T., Wu. M. F., Wu, M. F., Cheng, S. C., Hsieh, S. L., et al., CLEC5A is critical for dengue-virus-induced lethal disease. Nature, 2008. 453(7195): p. 672-6.
    204. Wu, S. J., Hayes, C. G., Dubois, D. R., Windheuser, M. G., Kang, Y. H., Watts, D. M. and Sieckmann, D. G., Evaluation of the severe combined immunodeficient (SCID) mouse as an animal model for dengue viral infection. Am J Trop Med Hyg, 1995. 52(5): p. 468-76.
    205. Kuruvilla, J. G., Troyer, R. M., Devi, S. and Akkina, R., Dengue virus infection and immune response in humanized RAG2(-/-)gamma(c)(-/-) (RAG-hu) mice. Virology, 2007. 369(1): p. 143-52.
    206. Lourenco, J. and Recker, M., Viral and epidemiological determinants of the invasion dynamics of novel dengue genotypes. PLoS Negl Trop Dis, 2010. 4(11): p. e894.
    207. 臺灣衛生福利部疾病管制署, 傳染病統計資料查詢系統. https://nidss.cdc.gov.tw/nndss/disease?id=061, 2020.
    208. Bernama, Dengue: 50,511 cases, 88 deaths registered nationwide. https://www.nst.com.my/news/nation/2020/06/600815/dengue-50511-cases-88-deaths-registered-nationwide, 2020.
    209. NE Agency, NEA Targeting Premises With Profuse Mosquito Breeding Habitats During Dengue Inspections. https://www.nea.gov.sg/media/news/news/index/nea-targeting-premises-with-profuse-mosquito-breeding-habitats-during-dengue-inspections, 2020.
    210. World Healthy Organization, Coronavirus disease (COVID-19) pandemic.
    https://www.who.int/emergen-ies/diseases/novel-coronavirus-2019, 2020.
    211. Ye, G., Pan, Z., Pan, Y., Deng, Q., Chen, L., Li, J., Wang, X., et al., Clinical characteristics of severe acute respiratory syndrome coronavirus 2 reactivation. J Infect, 2020. 80(5): p. e14-e17.
    212. Ravioli S., Ochsner, H. and Lindner, G., Reactivation of COVID-19 pneumonia: A report of two cases. J Infect, 2020. 81(2): p. e72-e73.
    213. Alizargar, J., Risk of reactivation or reinfection of novel coronavirus (COVID-19). J Formos Med Assoc, 2020. 119(6): p. 1123.
    214. Sadr, S., Seyed-Alinaghi, S., Ghiasvand, F., Hassan Nezhad, M., Javadian, N., Hossienzade, R. and Jafari, F., Isolated severe thrombocytopenia in a patient with COVID-19: A case report. IDCases, 2020. 21: p. e00820.
    215. Nham, E., Ko, J. H., Jeong, B. H., Huh, K., Cho, S. Y., Kang, C. I., Peck, K. R., et al., Severe Thrombocytopenia in a Patient with COVID-19. Infect Chemother, 2020.
    216. Lefrancais, E., Ortiz-Munoz, G., Caudrillier, A., Mallavia, B., Liu, F., Sayah, D. M., Looney, M. R., et al., The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature, 2017. 544(7648): p. 105-109.
    217. Konopka, K. E., Nguyen, T., Jentzen, J. M., Rayes, O., Schmidt, C. J., Wilson, A. M., Myers, J. L., et al., Diffuse Alveolar Damage (DAD) from Coronavirus Disease 2019 Infection is Morphologically Indistinguishable from Other Causes of DAD. Histopathology, 2020.
    218. Mandal, R.V., Mark, E. J. and Kradin, R. L., Megakaryocytes and platelet homeostasis in diffuse alveolar damage. Exp Mol Pathol, 2007. 83(3): p. 327-31.
    219. Zhou, Y., Zhang, B., Li, C., Huang, X., Cheng, H., Bao, X., Luo, Z., et al., Megakaryocytes participate in the occurrence of bleomycin-induced pulmonary fibrosis. Cell Death Dis, 2019. 10(9): p. 648.
    220. Janeway, C., Immunobiology : the immune system in health and disease. 4th ed. 1999, London New York, NY, US: Current Biology Publications; Garland Pub. xix, 635 p.
    221. New, J. S., King, R. G. and Kearney, J. F., Glycan Reactive Natural Antibodies and Viral Immunity. Viral Immunol, 2020. 33(4): p. 266-276.
    222. Ochsenbein, A. F., Fehr, T., Lutz, C., Suter, M., Brombacher, F., Hengartner, H. and Zinkernagel, R. M., Control of early viral and bacterial distribution and disease by natural antibodies. Science, 1999. 286(5447): p. 2156-9.
    223. Hamanova, M., Chmelikova, M., Nentwich, I., Thon, V. and Lokaj, J., Anti-Gal IgM, IgA and IgG natural antibodies in childhood. Immunol Lett, 2015. 164(1): p. 40-3.

    無法下載圖示 校內:2025-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE