簡易檢索 / 詳目顯示

研究生: 陳世修
Chen, Shih-Hsiu
論文名稱: 無線感測與移動機器人網路於環境之智慧估測與調節控制系統
Wireless Sensor and Mobile Robot Network in Intelligent Environmental Estimation and Regulation System
指導教授: 劉彥辰
Liu, Yen-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 161
中文關鍵詞: 無線感測器與致動器網路多機器人系統徑向基函數網路覆蓋控制梯度法
外文關鍵詞: wireless sensor and actuator network, multi-robot control system, radial basis function network, coverage control, gradient method
相關次數: 點閱:60下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 源於傳統覆蓋控制方法之缺陷與環境模型估測、無線感測器與致動器網路以及多機器人系統間整合研究之缺乏,本論文基於無線感測器網路之資訊以徑向基函數網路建構環境中的重要性分佈,再配合最佳化方法中被廣泛應用的梯度法與Lyapunov穩定性定理,提出一包含機器人環境覆蓋與致動器調節控制方法之環境智慧估測與調節系統。
    環境中感測資訊的分佈稱為感測密度函數,而無線感測器與致動器網路中感測器與致動器分別用於蒐集環境資訊與調節環境,其中有限距離非等向致動器裝置於移動機器人上能對特定範圍進行調節,而感測器方面則分為以下兩種,機器人上配置之有限距離非等向感測器稱為高階感測器,能提供特定範圍內之感測資訊;靜置於環境中之低階感測器則能提供特定位置之感測資訊。基於此兩種感測器所蒐集之資訊,以監督式學習訓練建構估測密度函數之徑向基函數網路中基底函數的中心位置、權重以及標準差,藉此達到估測與實際之最大化相似性。
    於獲得環境模型後,利用覆蓋控制的方法分別定義使移動機器人上高階感測器位置與轉向角達到最佳分佈的最佳化問題,同時考慮進環境中障礙物資訊後,再以梯度法設計控制器,找出機器人移動時最有效率的移動路徑,並使高階感測器達到資訊量最大化。在機器人不斷往重要性移動的過程中,以Lyapunov穩定性定理設計之調節控制器使機器人上有限距離非等向致動器將環境調節至目標分佈。最後,本論文以理論分析、數值模擬以及實驗驗證所提出系統之最佳化與穩定性。

    This thesis proposes a control framework that integrates Wireless Sensor and Actuator Networks (WSANs) with multi-robot control systems. There are two kinds of sensor under WSANs, including pre-deployed stationary sensors only providing the information of their own positions and limited-range anisotropic sensors embedded on mobile agents providing the information of specific regions. According to the sensory information gathered from stationary and embedded sensors, the environment model is constructed by Radial Basis Function (RBF) Networks to approximate the real condition, and supervised learning is used to train parameters of the network. With the estimated environmental distribution, gradient method coverage controllers for robot positions and orientations are designed and applied to drive mobile robots to the optimal sensing configuration. Furthermore, based on Lyapunov stability theorem, a regulating controller for embedded actuators is proposed to simultaneously regulate the designated region to the desired distribution. Theoretical analysis, numerical simulations, and experiment are given to demonstrate the performance of the proposed method.

    圖目錄 - xvii 表目錄 - xx 第一章緒論 - 1 1.1 研究背景 - 1 1.2 文獻回顧 - 5 1.3 研究動機與目的 - 8 1.4 研究目標與貢獻 - 9 1.5 論文架構 - 11 第二章基礎理論 - 13 2.1 非線性系統穩定性理論 - 13 2.1.1 非線性系統 - 13 2.1.2 系統穩定性 - 14 2.1.3 Lyapunov穩定性分析 - 15 2.2 凸函數最佳化 - 16 2.2.1 凸函數 - 17 2.2.2 延森不等式(Jenson's inequality) - 18 2.2.3 梯度法(Gradient method) - 19 2.3 徑向基函數網路(Radial Basis Function Network) - 20 2.3.1 徑向基函數 - 20 2.3.2 徑向基函數網路架構 - 20 2.4 萊布尼茲積分法則(Leibniz integral rule) - 21 2.4.1 萊布尼茲法則 - 21 2.4.2 平面積分公式 - 22 第三章環境密度函數之覆蓋控制 - 23 3.1 群組機器人覆蓋問題與系統架構 - 23 3.2 Lloyd控制器設計 - 26 3.3 基於徑向基函數網路之環境密度函數學習 - 30 3.4 有限距離非等向感測器之位置覆蓋控制器[15] - 32 3.4.1 梯度法位置控制器 - 33 3.4.2 全域梯度法與隊形控制策略 - 35 3.4.3 障礙物閃避控制器 - 36 3.5 有限距離非等向感測器之轉向角覆蓋控制器 - 38 3.6 模擬結果與討論 - 42 3.6.1 具簡單障礙物及多個峰值之環境覆蓋 - 43 3.6.2 具複雜障礙物與多個峰值之環境覆蓋 - 56 第四章環境調節致動器之設計 - 66 4.1 動態環境調節問題 - 66 4.2 有限距離非等向致動器之調節控制器設計 - 69 4.3 模擬結果與討論 - 72 4.3.1 均勻分佈至目標分佈之調節 - 73 4.3.2 複雜障礙物之室內環境調節 - 77 第五章實驗結果與討論 - 86 5.1 實驗平台架設 - 86 5.1.1 群組移動機器人系統 - 86 5.1.2 機器人作業系統 - 88 5.1.3 室內定位系統 - 89 5.2 實驗流程 - 90 5.3 實驗結果 - 93 5.3.1 具簡單障礙物及多個峰值之環境覆蓋 - 93 5.3.2 均勻分佈至目標分佈之環境調節任務 - 101 5.3.3 複雜障礙物之室內環境調節 - 105 5.4 討論 - 114 第六章結論與未來展望 - 115 6.1 結論 - 115 6.1.1 估測密度函數 - 115 6.1.2 有限距離非等向感測器之覆蓋控制 - 115 6.1.3 有限距離非等向致動器之調節控制 - 116 6.2 未來展望 – 116 參考文獻 - 118 Appendix - Experiment Codes - 123 A.1 Localization and Orientation Detection - 123 A.2 Communication System - 153

    [1] Jennifer Yick, Biswanath Mukherjee, and Dipak Ghosal. Wireless sensor network survey. Computer networks, 52(12):2292-2330, 2008.
    [2] Jiming Chen, Xianghui Cao, Peng Cheng, Yang Xiao, and Youxian Sun. Distributed collaborative control for industrial automation with wireless sensor
    and actuator networks. IEEE Transactions on Industrial Electronics, 57(12):4219-4230, 2010.
    [3] Xianghui Cao, Jiming Chen, Yang Xiao, and Youxian Sun. Building-environment control with wireless sensor and actuator networks: Centralized versus distributed. IEEE Transactions on Industrial Electronics, 57(11):3596-3605, Nov 2010.
    [4] Jorge Cortes, Sonia Martinez, Timur Karatas, and Francesco Bullo. Coverage control for mobile sensing networks. IEEE Transactions on Robotics and Automation, 20(2):243-255, 2004.
    [5] Stuart P. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information Theory, 28(2):129-137, 1982.
    [6] Omur Arslan and Daniel E. Koditschek. Voronoi-based coverage control of heterogeneous disk-shaped robots. In 2016 IEEE International Conference on Robotics and Automation (ICRA), pages 4259-4266, May 2016.
    [7] Maria Santos, Yancy Diaz-Mercado, and Magnus Egerstedt. Coverage control for multirobot teams with heterogeneous sensing capabilities. IEEE Robotics and Automation Letters, 3(2):919-925, April 2018.
    [8] Sung G. Lee, Yancy Diaz-Mercado, and Magnus Egerstedt. Multirobot control using time-varying density functions. IEEE Transactions on Robotics, 31(2):489-493, 2015.
    [9] Mac Schwager, Daniela Rus, and Jean-Jacques Slotine. Decentralized, adaptive coverage control for networked robots. The International Journal of Robotics Research, 28(3):357-375, 2009.
    [10] 林岑璋. 基於最大似然估計之直接學習覆蓋控制. Master's thesis, 國立成功大學, 2017.
    [11] 李維韜. 基於覆蓋控制之雙向人機遠端遙控系統. Master's thesis, 國立成功大學, 2016.
    [12] Katie Laventall and Jorge Cortes. Coverage control by robotic networks with limited-range anisotropic sensory. In 2008 American Control Conference, pages 2666-2671. IEEE, June 2008.
    [13] Azwirman Gusrialdi, Takeshi Hatanaka, and Masayuki Fujita. Coverage control for mobile networks with limited-range anisotropic sensors. In 2008 47th IEEE Conference on Decision and Control, pages 4263-4268. IEEE, Dec 2008.
    [14] Mark J. L. Orr. Introduction to Radial Basis Function Networks. Center Cognitive Sci., Univ. Edinburgh, Edinburgh, U.K., 1996.
    [15] 林沐泰. 環境估測與調節之多移動機器人系統. Master's thesis, 國立成功大學, 2018.
    [16] ROBOTIS. Specifications of turtlebot3. http://emanual.robotis.com/ docs/en/platform/turtlebot3/specifications/#specifications.
    [17] Tamio Arai, Enrico Pagello, and Lynne E. Parker. Editorial: Advances in multi-robot systems. IEEE Transactions on Robotics and Automation, 18(5):655-661, 2002.
    [18] Bruno Siciliano and Oussama Khatib. Springer handbook of robotics. Springer, 2016.
    [19] Nikhil Chopra, Dusan M. Stipanovic, and Mark W. Spong. On synchronization and collision avoidance for mechanical systems. In 2008 American Control Conference, pages 3713-3718. IEEE, 2008.
    [20] Tucker Balch and Ronald C. Arkin. Behavior-based formation control for multirobot teams. IEEE Transactions on Robotics and Automation, 14(6):926-939, 1998.
    [21] Reza Olfati-Saber. Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Transactions on automatic control, 51(3):401-420, 2006.
    [22] Yen-Chen Liu and Nikhil Chopra. Synchronization of networked robotic systems on strongly connected graphs. In 2010 49th IEEE Conference on Decision and Control, pages 3194-3199. IEEE, 2010.
    [23] Takeshi Hatanaka, Yuji Igarashi, Masayuki Fujita, and Mark W Spong. Passivity-based pose synchronization in three dimensions. IEEE Transactions on Automatic Control, 57(2):360-375, 2012.
    [24] Silvia Mastellone, Dusan M. Stipanovic, Christopher R. Graunke, Koji A. Intlekofer, and Mark W. Spong. Formation control and collision avoidance for multi-agent non-holonomic systems: Theory and experiments. The International Journal of Robotics Research, 27(1):107-126, 2008.
    [25] Wolfram Burgard, Mark Moors, Cyrill Stachniss, and Frank E. Schneider. Coordinated multi-robot exploration. IEEE Transactions on Robotics,21(3):376-386, 2005.
    [26] James Bruce and Manuela Veloso. Real-time randomized path planning for
    robot navigation. IEEE/RSJ International Conference on Intelligent Robots and Systems, 3:2383-2388, 2002.
    [27] Xianghui Cao, Jiming Chen, Yan Zhang, and Youxian Sun. Development of an integrated wireless sensor network micro-environmental monitoring system. ISA Transactions, 47(3):247-255, July 2008.
    [28] Geoffrey Werner-Allen, Konrad Lorincz, Mario Ruiz, Omar Marcillo, Jeff Johnson, Jonathan Lees, and Matt Welsh. Deploying a wireless sensor network on an active volcano. IEEE Internet Computing, 10(2):18-25, 2006.
    [29] Ian F. Akyildiz and Ismail H. Kasimoglu. Wireless sensor and actor networks: research challenges. Ad Hoc Networks, 2(4):351-367, 2004.
    [30] Xu Li, Inria Lille, Rafael Falcon, Amiya Nayak, and Ivan Stojmenovic. Servicing wireless sensor networks by mobile robots. IEEE Communications Magazine, 50(7):147-154, 2012.
    [31] Jorge Cortes, Sonia Martinez, Timur Karatas, and Francesco Bullo. Coverage control for mobile sensing networks. In IEEE International Conference on Robotics and Automation, pages 1327-1332. IEEE, 2002.
    [32] Luciano C. A. Pimenta, Vijay Kumar, Renato C. Mesquita, and Guilherme A. S. Pereira. Sensing and coverage for a network of heterogeneous robots. In 47th IEEE Conference on Decision and Control, pages 3947-3952. IEEE, 2008.
    [33] Andreas Breitenmoser, Mac Schwager, Jean-Claude Metzger, Roland Siegwart, and Daniela Rus. Voronoi coverage of non-convex environments with a group of networked robots. In 2010 IEEE International Conference on Robotics and Automation, pages 4982-4989. IEEE, 2010.
    [34] Marzieh Kooshkbaghi and Farzaneh Abdollahi. Coverage control considering unknown moving obstacles avoidance. In 2014 Second RSI/ISM International Conference on Robotics and Mechatronics (ICRoM), pages 089-094. IEEE, Oct 2014.
    [35] Yiannis Stergiopoulos, Michalis Thanou, and Anthony Tzes. Distributed collaborative coverage-control schemes for non-convex domains. IEEE Transactions on Automatic Control, 60(9):2422-2427, 2015.
    [36] Jorge Cortes. Coverage optimization and spatial load balancing by robotic sensor networks. IEEE Transactions on Automatic Control, 55(3):749-754, 2010.
    [37] Yiannis Stergiopoulos and Anthony Tzes. Coverage-oriented coordination of mobile heterogeneous networks. In Control & Automation (MED), 2011 19th Mediterranean Conference on, pages 175-180. IEEE, 2011.
    [38] Wei Li and Christos G. Cassandras. Distributed cooperative coverage control of sensor networks. In 44th IEEE Conference on Decision and Control and 2005 European Control Conference, pages 2542-2547. IEEE, 2005.
    [39] Islam I. Hussein and Dusan M. Stipanovic. Effective coverage control for mobile sensor networks with guaranteed collision avoidance. IEEE Transactions on Control Systems Technology, 15(4):642-657, 2007.
    [40] Jaeyong Lee, Avinash D. Dharne, and Suhada Jayasuriya. Potential field based hierarchical structure for mobile sensor network deployment. In American Control Conference, pages 5946-5951. IEEE, 2007.
    [41] Farshid Abbasi, Afshin Mesbahi, and Javad Mohammadpour. Team-based coverage control of moving sensor networks. In American Control Conference, pages 5691-5696. IEEE, 2016.
    [42] Tsen-Chang Lin and Yen-Chen Liu. Multi-robot control system in wireless sensor and actuator network. In 2016 International Conference on Advanced Robotics and Intelligent Systems, pages 1-6. IEEE, 2016.
    [43] Hassan K. Khalil and Jessy W. Grizzle. Nonlinear systems, volume 3. Prentice hall New Jersey, 1996.
    [44] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge Univ. Press, Cambridge, U.K., 2003.
    [45] Harley Flanders. Differentiation under the integral sign. The American Mathematical Monthly, 80(6):615-627, 1973.
    [46] Ros wiki. https://www.ros.org/.
    [47] Optitrack. https://optitrack.com/.
    [48] Takeshi Hatanaka, Tatsuya Ibuki, Azwirman Gusrialdi, and Masayuki Fujita. Coverage control for camera sensor networks: Its implementation and experimental verification. In 2009 17th Mediterranean Conference on Control and Automation, pages 446-451. IEEE, June 2009.

    下載圖示 校內:2024-08-31公開
    校外:2024-08-31公開
    QR CODE