簡易檢索 / 詳目顯示

研究生: 葉品廷
Yeh, Pin-Ting
論文名稱: 基於傳統特徵、肝小梁特徵及卷積神經網路特徵之自動化肝癌分級
Automatic Hepatocellular Carcinoma Grading through Traditional, Trabecular, and CNN features
指導教授: 詹寶珠
Chung, Pau-Choo
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 73
中文關鍵詞: 電腦輔助偵測及診斷卷積神經網路深度學習肝癌多倍率影像數位組織切片影像特徵擷取影像處理分類器
外文關鍵詞: Computer-aided detection and diagnosis, convolutional neural networks, deep learning, liver tumor, multiple magnification images, whole slide image, feature extraction, image processing, classifier
相關次數: 點閱:198下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肝癌的病理組織分化程度分級在癌症預後及術後追蹤上是一項重要的步驟。然而,傳統的診斷方式主觀且耗時。因此本論文提出一種自動化將肝臟切片影像分為四種分級的其中一種的方法。此方法使用多倍率影像卷積神經網路作為特徵擷取器來取得難以量化之紋理特徵。並使用基於影像處理的技巧取得關於血管、肝細胞、肝小梁的特徵。最後,建構一個分類器使用以上所有特徵預測肝癌影像的癌症分級。分類器在病理影像肝癌分級中達到了 98.2%的預測準確度。根據實驗結果顯示,分類器對肝癌病理影像分級預測展現了可靠的準確度,並證明來自影像卷積神經網路的特徵及來自肝小梁的特徵皆能輔助分類器的判斷,提升分級準確度。

    The accurate grading of Hepatocellular Carcinoma (HCC) in histopathological liver tissue images is crucial to prognosis and treatment planning. However, the traditional diagnosis process is subjective and time-consuming. Accordingly, this study proposes a novel method to automatically classify a liver tissue as one of four different tumor grades, namely 1(Well differentiated), 2(Moderately differentiated),3(Poorly differentiated), and (Undifferentiated). In the proposed method, a CNN-based feature extractor is trained to retrieve the features of the tissue that are hard to be quantized by traditional method. In addition, sinusoid, cell and trabecular features are extracted by image processing. Finally, a classifier is constructed using all the features to predict the tumor grade of the input tissue.
    The proposed classifier reaches a 98.2% accuracy on whole slide images (WSIs) of HCC.
    The experimental results show that the proposed method performs well on liver tumor grading prediction and proves that the features obtained from the CNN-based feature extractor and trabecular features can further enhance the performance of the classifier.

    Abstract II Table of Content IV List of Tables VI List of Figures VII Chapter 1 Introduction 1 Chapter 2 Related Works 7 Chapter 3 Tumor Grading with Feature Extraction 11 3.1 CNN Feature Extractor 13 3.1.1 Word2Vec 15 3.1.2 Structure/Workflow of Feature Extractor 16 3.1.2.1 Loss Function 16 3.1.3 Experiments of the CNN Model 18 3.2 Feature Extraction with Image Processing 22 3.2.1 Clustering with K-means 22 3.2.2 Extract Cytological Features 25 3.2.3 Extract Structural Features 26 3.2.3.1 Skeletonize Trabecular 28 3.2.3.2 Nuclei Region Growing 30 3.2.3.3 Trabecular Thickness and Number of Trabecular Layers 31 3.3 Tumor Grading Classifier 34 3.3.1 XGBoost 34 3.3.2 Whole Slide Prediction with Classifier 34 3.3.2.1 Intratumor Heterogeneity 35 3.3.2.2 Sampling 36 3.3.2.3 Evaluation 36 Chapter 4 Experimental Results and Discussions 38 4.1 H&E Stained Liver Tissue WSI Dataset 38 4.2 Performance of HCC Grading 38 4.2.1 Statistic Result 39 4.2.2 Visualizing HCC Grading Classification 42 4.2.2.1 Test Cases 43 4.2.2.2 Special Cases 65 4.3 Feature Importance Ranking of Classifier 66 Chapter 5 Conclusions and Future Works 69 Reference 70  

    [1] Ministry of Health and Welfare of Taiwan, the Death Statistics of Taiwanese in
    2017. Retrieved March 8, 2019, from https://www.mohw.gov.tw/cp-16-41794
    1.html
    [2] Cancer Treatment Centers of America, Types of Liver Cancer: Common, Rare,
    and More Varieties. Retrieved March 8, 2019, from
    https://www.cancercenter.com/cancer-types/liver-cancer/types
    [3] S. Petushi, F. U. Garcia, M. M. Haber, C. Katsinis, and A. Tozeren, “Large-scale
    computations on histology images reveal grade-differentiating parameters for
    breast cancer,” BMC Med. Imaging, vol. 6, no. 1, p. 14, 2006.
    [4] S. Naik, S. Doyle, S. Agner, A. Madabhushi, M. Feldman, and J. Tomaszewski,
    “Automated gland and nuclei segmentation for grading of prostate and breast
    cancer histopathology,” in 2008 5th IEEE International Symposium on Biomedical
    Imaging: From Nano to Macro, Proceedings, ISBI, 2008, pp. 284–287.
    [5] S. Doyle, S. Agner, A. Madabhushi, M. Feldman, and J. Tomaszewski,
    “Automated grading of breast cancer histopathology using spectral clustering with
    textural and architectural image features,” in 2008 5th IEEE International
    Symposium on Biomedical Imaging: From Nano to Macro, Proceedings, ISBI,
    2008, pp. 496–499.
    [6] Lai, Y.H. & W. Huang, P & L. Lin, P. (2007). An effective automated grading system for HCC in biopsy images. 396-402.
    [7] S. I. Niwas, P. Palanisamy, W. J. Zhang, N. A. Mat Isa, and R. Chibbar, “Log
    gabor wavelets based breast carcinoma classification using least square support
    vector machine,” in 2011 IEEE International Conference on Imaging Systems and Techniques, IST 2011 - Proceedings, 2011, pp. 219–223.
    [8] C. Atupelage, H. Nagahashi, M. Yamaguchi, T. Abe, A. Hashiguchi and M.
    Sakamoto, "Multifractal feature descriptor for grading Hepatocellular
    carcinoma," Proceedings of the 21st International Conference on Pattern
    Recognition (ICPR2012), Tsukuba, 2012, pp. 129-132.
    [9] Atupelage C, Nagahashi H, Kimura F, et al. Computational hepatocellular carcinoma tumor grading based on cell nuclei classification. Journal of Medical Imaging. 2014;1(3):034501. doi:10.1117/1.JMI.1.3.034501.
    [10] Aziz MA, Kanazawa H, Murakami Y, Kimura F, Yamaguchi M, Kiyuna T, et al. Enhancing automatic classification of hepatocellular carcinoma images through image masking, tissue changes and trabecular features. J Pathol Inform 2015;6:26.
    [11] Kiyuna, T., Saito, A., Marugame, A., Yamashita, Y., Ogura, M., Cosatto, E., ... Sakamoto, M. (2013). Automatic classification of hepatocellular carcinoma images based on nuclear and structural features. In Progress in Biomedical Optics and Imaging - Proceedings of SPIE (Vol. 8676). [86760Y] DOI: 10.1117/12.2006667
    [12] Bingbing Xia, Huiyan Jiang, Huiling Liu, and Dehui Yi, “A Novel Hepatocellular Carcinoma Image Classification Method Based on Voting Ranking Random Forests,” Computational and Mathematical Methods in Medicine, vol. 2016, Article ID 2628463, 8 pages, 2016
    [13] P. W. Huang and Y. H. Lai, “Effective segmentation and classification for HCC
    biopsy images,” Pattern Recognit., vol. 43, no. 4, pp. 1550–1563, 2010.
    [14] Ishikawa M, Ahi ST, Kimura F, Yamaguchi M, Nagahashi H, Hashiguchi A, et
    al. Segmentation of sinusoids in hematoxylin and eosin stained liver specimens
    using an orientation-selective filter. Open J Med Imaging. 2013;3:144–55.
    [15] Ishikawa M, Murakami Y, Ahi ST, et al. Automatic quantification of
    morphological features for hepatic trabeculae analysis in stained liver specimens.
    J Med Imaging (Bellingham). 2016;3(2):027502.
    [16] Ishikawa M, Murakami Y, Ahi ST, Yamaguchi M, Kobayashi N, Kiyuna T,
    Yamashita Y, Saito A, Abe T, Hashiguchi A, Sakamoto M (2016) Automatic
    quantification of morphological features for hepatic trabeculae analysis in
    stained liver specimens. J Med Imag. doi: 10.1117/1.JMI.3.2.027502
    [17] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic
    segmentation. InCVPR,2015
    [18] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: Adeep convolutional
    encoder-decoder architecture for image segmentation n.arXiv:1511.00561v2
    [cs.CV], 2015.
    [19] K. Simonyan and A. Zisserman. Very deep convolutional networks for large
    scale image recognition. In ICLR, 2015
    [20] Y. Zhou, H. Chang, K. Barner, P. Spellman, and B. Parvin, “Classification of
    histology sections via multispectral convolutional sparse coding,” in Proceedings
    of the IEEE Computer Society Conference on Computer Vision and Pattern
    Recognition, 2014, pp. 3081–3088.
    [21] Y. Xu, Z. Jia, Y. Ai, F. Zhang, M. Lai, and E. I. C. Chang, “Deep convolutional
    activation features for large scale Brain Tumor histopathology image classification
    and segmentation,” in ICASSP, IEEE International Conference on Acoustics,
    Speech and Signal Processing - Proceedings, 2015, pp. 947–951.
    [22] Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classificationwith deep
    convolutional neural networks. In NIPS, 2012
    [23] A. Cruz-Roa et al., “Accurate and reproducible invasive breast cancer detection in
    whole-slide images: A Deep Learning approach for quantifying tumor extent,” Sci.
    Rep., vol. 7, no. 46450, 2017.
    [24] D. Cires ̧an, A. Giusti, L. Gambardella, and J. Schmidhuber. Mi-tosis detection
    in breast cancer histology images with deep neuralnetworks. InMICCAI, 2013
    [25] Li S, Jiang H, Pang W (2017) Joint multiple fully connected convolutional neural
    network with extreme learning machine for hepatocellular carcinoma nuclei
    grading. Comput Biol Med 84:156–167
    [26] Wei-Che Huang, Automatic HCC Detection Using Convolutional Network with
    Multi-Magnification Input Images. AICAS 2019
    [27] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.Efficient estimation
    of word representationsin vector space.ICLR Workshop, 2013
    [28] Chen, T. & Guestrin, C. Xgboost: A scalable tree boosting system. In Proc. 22nd
    ACM SIGKDD International Conference on Knowledge Discovery and Data
    Mining 785–794 (ACM, 2016)
    [29] Liu, J.; Dang, H.; Wang, X.W. The significance of intertumor and intratumor
    heterogeneity in liver cancer. Exp. Mol. Med. 2018, 50, e416

    無法下載圖示 校內:2029-08-08公開
    校外:2029-08-08公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE