簡易檢索 / 詳目顯示

研究生: 德銘理
Mpendulo Ntando Dlamini
論文名稱: 高強度鋼筋之搭接握裹強度於超高性能混凝土梁
Bond Strength of Spliced High Strength Steel Reinforcing Bars in Ultra-High Performance Concrete (UHPC) Beams
指導教授: 洪崇展
Hung, Chung-Chan
共同指導教授: Remy Lequesne
Remy Lequesne
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 128
中文關鍵詞: 高強度鋼高性能混凝土梁搭接握裹強度
外文關鍵詞: Ultra-high performance concrete(UHPC), high strength steel(HSS), splice length, bond strength
相關次數: 點閱:178下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Several studies on tension lap splices have proved that using Ultra-high performance concrete (UHPC) improves the bond between reinforcement and the concrete. The high bond strength of UHPC is an effective solution to reduce the required development length or splice length for steel reinforcing bars. The bond strength and development length of reinforcing bars in UHPC have been commonly assessed using direct pullout tests. Such methods however may not completely reproduce the stress field experienced by the flexural reinforcement in beams and hence should not be used as a sole basis for determining the bond strength. The current study investigated the bond strength of high strength steel (HSS) bars in Ultra-high performance concrete (UHPC) using four point loading tests on lap splice UHPC beams. The experimental variables included the bar size, type of concrete, steel fiber volume content, and splice length. Fourteen tension-spliced beams were constructed and tested. Two different types of concrete mix was used, high strength concrete (HSC) and Ultra-high performance concrete with 2% and 0.75% fiber volume content. #8(D25)-SD685 and #5(D16)-SD785 high strength tension spliced bars with 1.5d_b concrete cover was used for this study. Crack pattern, crack propagation, ultimate load, midspan span deflection and reinforcement strain was recorded and analyzed to study the mentioned parameters effect.

    TABLE OF CONTENTS II LIST OF FIGURES VI LIST OF TABLES IX ABSTRACT X CHAPTER 1 1 INTRODUCTION 1 1.1 Research Motivation 1 1.2 Research Objectives 1 1.3 Research Method 2 CHAPTER 2 3 LITERATURE REVIEW 3 2.1 Ultra-high performance concrete (UHPC) 3 2.2 Bond Interaction between steel and concrete 4 2.3 Bond influencing factors 5 2.3.1 Bar geometry 5 2.3.2 Concrete properties 7 2.3.3 Presence of confinement 9 2.3.4 The volume of concrete around rebars 10 2.4 Test Methods 11 2.5 Bond strength 12 2.5.1 UHPC beams bond strength estimation 15 2.5.2 High Strength Concrete Bond Estimation 18 2.6 Introduction of Bond Strength Models 20 2.6.1 ACI 318-19 20 2.6.2 Orangun, Jirsa, and Breen [11, 39] 23 2.6.3 Zuo and Darwin (1998) [23, 40] 23 2.6.4 fib Model Code (2010) [25, 41] 25 2.6.5 ACI 408R-03 [42] 26 CHAPTER 3 27 EXPERIMENTAL METHODS 27 3.1 Introduction 27 3.2 Design of Beam Specimens 27 3.3 Beam Notation 30 3.4 Beam Strength Design 33 3.4.1 Nominal Strength 33 3.4.2 Shear Strength 34 3.5 Fabrication of Reinforcement Cage 36 3.6 Proportioning and Mixing of UHPC and HSC 41 3.7 Instrumentation and Testing 44 3.7.1 Digital Image Correlation (DIC) 47 3.8 Material Testing and Properties 49 3.8.1 Reinforcing bars 49 3.8.2 UHPC Compressive Strength 52 3.8.3 UHPC direct tensile strength 52 CHAPTER 4 54 RESULTS 54 4.1 Introduction 54 4.2 Material Properties Testing 54 4.2.1 UHPC Compressive Strength 54 4.2.2 UHPC Tensile Strength 58 4.3 Beam Test Results 63 4.3.1 #8(D25) Lap-spliced Beams Experimental Results 65 4.3.1.1 Beam B8-F200-120 65 4.3.1.2 Beam B8-F200-90 67 4.3.1.3 Beam B8-F200-60 69 4.3.1.4 Beam B8-F75-120 71 4.3.1.5 Beam B8-F75-90 73 4.3.1.6 Beam B8-F75-60 75 4.3.1.7 Beam B8 –HSC-120 77 4.3.2 #5(D16) Lap-spliced Beams 80 4.3.2.1 Beam B5-F200-70 80 4.3.2.2 Beam B5-F200-50 82 4.3.2.3 Beam B5-F200-30 84 4.3.2.4 Beam B5-F75-70 87 4.3.2.5 Beam B5-F75-50 89 4.3.2.6 Beam B5-F75-30 91 4.3.2.7 Beam B5-HSC-70 93 CHAPTER 5 97 DISCUSSIONS 97 5.1 Introduction 97 5.2 Beams Failure Mode and Crack Pattern 97 5.3 Beam Deflection 100 5.4 Flexural Strength 102 5.5 Maximum Bar Stress 105 5.6 Bond Strength 106 5.6.1 Effect of Splice Length 108 5.6.2 Effect of Fiber Content 109 5.6.3 Effect of Bar Size 110 5.6.4 Effect of Concrete Type 111 5.7 Comparison with Models 112 5.8 Bond strength calculation methods comparison 116 5.9 Beam Ductility 118 5.9.1 Displacement Ductility 118 5.9.2 Section Ductility 119 CHAPTER 6 122 SUGGESTIONS 122 CHAPTER 7 123 CONCLUSIONS 123 REFERENCES 125

    1. Alkaysi, M. and S. El-Tawil, Factors affecting bond development between Ultra High Performance Concrete (UHPC) and steel bar reinforcement. Construction and Building Materials, 2017. 144: p. 412-422.
    2. Naaman, A.E. and H.-W. Reinhardt, Proposed classification of HPFRC composites based on their tensile response. Materials and structures, 2006. 39(5): p. 547-555.
    3. Graybeal, B.A. and J. Yuan, Bond Behavior of Reinforcing Steel in Ultra-High Performance Concrete. 2014, United States. Federal Highway Administration.
    4. Yuan, J. and B.A. Graybeal, Bond behavior of reinforcing steel in ultra-high performance concrete. 2014, United States. Federal Highway Administration. Office of Infrastructure ….
    5. Haber, Z. B., De la Varga, I., Graybeal, B. A., Nakashoji, B., & El-Helou, R. (2018). Properties and behavior of UHPC-class materials (No. FHWA-HRT-18-036). United States. Federal Highway Administration. Office of Infrastructure Research and Development.
    6. 洪崇展, 戴艾珍, 顏誠皜, 溫國威, & 張庭維. (2017). 新世代多功能性混凝土材料-高性能纖維混凝土. 土木水利, 44(1), 33-51.
    7. Bond, A., Development of Straight Reinforcing Bars in Tension. ACI 408R-03, 2003.
    8. Khalil, W.I. and Y. Tayfur, Flexural strength of fibrous ultra high performance reinforced concrete beams. ARPN Journal of Engineering and Applied Sciences, 2013. 8(3): p. 200-214.
    9. Harajli, M.H., B.S. Hamad, and A.A. Rteil, Effect of confinement of bond strength between steel. ACI Structural Journal, 2004. 101(5): p. 595-603.
    10. Yoo, D.-Y. and H.-O. Shin, Bond performance of steel rebar embedded in 80–180 MPa ultra-high-strength concrete. Cement and Concrete Composites, 2018. 93: p. 206-217.
    11. Hamad, B. and M. Machaka, Effect of transverse reinforcement on bond strength of reinforcing bars in silica fume concrete. Materials and Structures, 1999. 32(6): p. 468-476.
    12. Ganesh, P. and A.R. Murthy, Tensile behaviour and durability aspects of sustainable ultra-high performance concrete incorporated with GGBS as cementitious material. Construction and Building Materials, 2019. 197: p. 667-680.
    13. Harajli, M., Bond stress–slip model for steel bars in unconfined or steel, FRC, or FRP confined concrete under cyclic loading. Journal of structural engineering, 2009. 135(5): p. 509-518.
    14. Chao, S.-H., A.E. Naaman, and G.J. Parra-Montesinos, Bond behavior of reinforcing bars in tensile strain-hardening fiber-reinforced cement composites. ACI Structural Journal, 2009. 106(6): p. 897.
    15. Silva Filho, L. C. P., Vale Silva, B., Dal Bosco, V. I., Gomes, L. E. S., Barbosa, M. P., & Lorrain, M. S. (2012). Analysis of the influence of rebar geometry variations on bonding strength in the pull-out test. Bond in Concrete.
    16. Lutz, L.A. and P. Gergely. Mechanics of bond and slip of deformed bars in concrete. in Journal Proceedings. 1967.
    17. Orangun, C., J. Jirsa, and J. Breen. A reevaulation of test data on development length and splices. in Journal Proceedings. 1977.
    18. Orangun, C.O., J. Jirsa, and J. Breen. A reevaulation of test data on development length and splices. in Journal Proceedings. 1977.
    19. Zuo, J. and D. Darwin, Bond strength of high relative rib area reinforcing bars. 1998, University of Kansas Center for Research, Inc.
    20. Darwin, D., McCabe, S. L., Idun, E. K., & Schoenekase, S. P. (1992). Development length criteria: bars not confined by transverse reinforcement. American Concrete Institute.
    21. Walraven, J.C. and A. Bigaj‐van Vliet, The 2010 fib Model Code for Structural Concrete: a new approach to structural engineering. Structural Concrete, 2011. 12(3): p. 139-147.
    22. Yuan, J. and B. Graybeal, Bond of Reinforcement in Ultra-High-Performance Concrete. ACI Structural Journal, 2015. 112(6).
    23. Fehling, E., P. Lorenz, and T. Leutbecher. Experimental investigations on anchorage of rebars in UHPC. in Proceedings of Hipermat 2012 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials. 2012.
    24. Lagier, F., B. Massicotte, and J.-P. Charron, Bond strength of tension lap splice specimens in UHPFRC. Construction and Building Materials, 2015. 93: p. 84-94.
    25. Ronanki, V.S., D.B. Valentim, and S. Aaleti. Development length of reinforcing bars in UHPC: An experimental and analytical investigation. in First International Interactive Symposium on UHPC. 2016.
    26. Bandelt, M.J. and S.L. Billington, Bond behavior of steel reinforcement in high-performance fiber-reinforced cementitious composite flexural members. Materials and structures, 2016. 49(1): p. 71-86.
    27. Harajli, M.H., Bond strengthening of lap spliced reinforcement using external FRP jackets: An effective technique for seismic retrofit of rectangular or circular RC columns. Construction and Building Materials, 2009. 23(3): p. 1265-1278.
    28. Tastani, S. and S.J. Pantazopoulou, Direct tension pullout bond test: Experimental results. Journal of Structural Engineering, 2010. 136(6): p. 731-743.
    29. Tastani, S. and S. Pantazopoulou, Experimental evaluation of the direct tension-pullout bond test. Bond in Concrete–from research to standards, 2002(12).
    30. Bošnjak, J., A. Sharma, and C. Öttl, Modified beam-end test setup to study the bond behavior of reinforcement in concrete after fire. Materials and Structures, 2018. 51(1): p. 1-10.
    31. Hwang, H. J., Baek, J. W., Kim, J. Y., & Kim, C. S. (2019). Prediction of bond performance of tension lap splices using artificial neural networks. Engineering Structures, 198, 109535.
    32. Li, X., Wang, J., Bao, Y., & Chen, G. (2017). Cyclic behavior of damaged reinforced concrete columns repaired with high-performance fiber-reinforced cementitious composite. Engineering Structures, 136, 26-35.
    33. Liu, J., Han, F., Cui, G., Zhang, Q., Lv, J., Zhang, L., & Yang, Z. (2016). Combined effect of coarse aggregate and fiber on tensile behavior of ultra-high performance concrete. Construction and Building Materials, 121, 310-318.
    34. Canbay, E. and R.J. Frosch, Bond strength of lap-spliced bars. ACI Structural Journal, 2005. 102(4): p. 605.
    35. Orangun, C., J.O. Jirsa, and J.E. Breen, The strength of anchored bars: a reevaluation of test data on development length and splices. 1975: Center for Highway Research, University of Texas at Austin.
    36. Zuo, J. and D. Darwin. Splice strength of conventional and high relative rib area bars in normal and high-strength concrete. 2000. American Concrete Institute.
    37. béton, C.e.-i.d. and F.I.d.l. Précontrainte, CEB-FIP model code 1990: Design code. Vol. 1993. 1993: Thomas Telford Publishing.
    38. Committee, A., Bond and development of straight reinforcing bars in tension (ACI 408R-03). American Concrete Institute, Detroit, Michigan, US, 2003: p. 49.
    39. Ahmad, S. H., Henager Sr, C. H., Arockiasamy, M., Balaguru, P. N., Ball, C., Ball Jr, H. P., ... & Daniel, J. I. (1988). Design considerations for steel fiber reinforced concrete.40. Oh, B.H., Flexural analysis of reinforced concrete beams containing steel fibers. Journal of structural engineering, 1992. 118(10): p. 2821-2835.
    41. Sharma, A. Shear strength of steel fiber reinforced concrete beams. in Journal Proceedings. 1986.
    42. Yang, I.H., C. Joh, and B.-S. Kim, Structural behavior of ultra high performance concrete beams subjected to bending. Engineering Structures, 2010. 32(11): p. 3478-3487.
    43. Derzsi, Z. and R. Volcic, MOTOM toolbox: MOtion Tracking via Optotrak and Matlab. Journal of neuroscience methods, 2018. 308: p. 129-134.
    44. Ezeldin, A. and P. Balaguru, Bond behavior of normal and high-strength fiber reinforced concrete. Materials Journal, 1989. 86(5): p. 515-524.
    45. Choi, O.C., S.Y. Yang, and H. Choi, Splice Strength of Reinforcing Bars with High and Low Alternating Ribs. ACI Structural Journal, 2020. 117(5).
    46. Ichinose, T., Kanayama, Y., Inoue, Y., & Bolander Jr, J. E. (2004). Size effect on bond strength of deformed bars. Construction and building materials, 18(7), 549-558.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE