簡易檢索 / 詳目顯示

研究生: 馮昱豪
Feng, Yu-Hao
論文名稱: 鎢於MOCVD反應器中噴頭流場之模擬研究
Flow Field Simulation Study of the Showerhead in a Tungsten Film MOCVD Reactor
指導教授: 潘文峰
Pan, Wen-Fung
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 85
中文關鍵詞: 金屬有機化學氣相沉積噴頭計算流體力學
外文關鍵詞: MOCVD, Showerhead, CFD
相關次數: 點閱:22下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鎢具有高熔點、低電阻率、接近矽的熱膨脹係數、電導率穩定性、電遷移性小和大量均勻填充的特性。在半導體先進晶片,於金屬有機化學氣相沉積(MOCVD)製程中,鎢為首選材料。本文以MOCVD反應器沉積鎢為研究對象。利用計算流體力學模擬分析噴頭在MOCVD反應器中化學反應,探討反應器內的流場分佈情形與沉積率的影響。
    本文探討MOCVD反應器的特性,並假設反應器內部為穩態層流流場。研究所討論的參數包括基板反應溫度、氣體流速、反應室操作壓力、WF₆與H₂的摩爾分數、噴頭孔徑,以及入口處是否添加擋板等。本文主要分析反應器內部的流場分佈與其對沉積率變化的影響,並以提升薄膜沉積的均勻性為目標。
    本研究結果顯示,透過掌控基板反應溫度、氣體流速、反應室操作壓力、WF₆與H₂的摩爾分數、噴頭孔徑及入口處是否加裝擋板等參數,可有效優化反應器內的流場分佈、提升沉積率,並改善薄膜的沉積均勻性,對晶圓製程具有顯著助益。

    This study employs Computational Fluid Dynamics (CFD) to simulate and analyze the deposition behavior of tungsten (W) thin films in a Metal-Organic Chemical Vapor Deposition (MOCVD) reactor. Owing to its low resistivity, excellent thermal stability, and thermal expansion coefficient close to silicon, tungsten is widely used in advanced semiconductor processes for contact and metal gate structures. This research focuses on a vertical showerhead-type MOCVD reactor and investigates how key process parameters affect the deposition rate and film thickness uniformity, providing insights for reactor design and process optimization.
    A two-dimensional axisymmetric mesh was constructed using ICEM CFD, and flow field and chemical reactions were simulated using Ansys Fluent. The studied parameters include substrate temperature, gas flow rate, chamber pressure, mole fractions of WF₆ and H₂, showerhead orifice diameter, and the presence of a baffle plate near the inlet. The primary chemical reaction modeled is: WF6(g) + 3H2(g) → W(s) + 6HF(g)
    Simulation results show that substrate temperature significantly influences the deposition mechanism: lower temperatures result in reaction-limited regimes with better uniformity, while higher temperatures lead to mass-transport-limited conditions and non-uniform deposition. Gas flow rate and showerhead design also affect deposition rate and distribution. Proper baffle design effectively improves gas uniformity. This research offers valuable references for optimizing MOCVD equipment and processing conditions, aiming to enhance the quality of tungsten film deposition.

    摘要 I 誌謝 XII 目錄 XIII 圖目錄 XV 符號說明 XVIII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機、目的與方法 4 第二章 理論基礎 6 2.1 MOCVD設備原理 6 2.2 薄膜沉積原理 14 2.3 MOCVD噴嘴原理 21 2.4 鎢在MOCVD半導體先進製程的角色 25 第三章 模擬設計與研究方案 27 3.1 ICEM CFD網格生成軟體 27 3.2 Ansys Fluent流體模擬軟體 27 3.3 CFD之控制方程式 28 3.4 研究方案設計 30 3.5 邊界條件建立 31 3.6 網格建立 32 第四章 模擬結果與討論 35 4.1 MOCVD反應器內之流動場和溫度場結果與討論 35 4.2不同條件下含物質摩爾分數對鎢沉積均勻性的影響 36 4.3 不同基板溫度下對鎢平均沉積速率和均勻性的影響 39 4.4 不同質量流速下對鎢平均沉積速率和均勻性的影響 44 4.5 不同操作壓力下對鎢平均沉積速率和均勻性的影響 47 4.6 噴頭孔徑對鎢沉積均勻性的影響 49 4.7 擋板尺寸對鎢沉積均勻性的影響 54 第五章 結論與未來展望 59 5.1 結論 59 5.2 未來展望 60 參考文獻 61

    [1] V.K. Jayaramann, Y.M. Kuwabara, A.M. Álvarez, and M. Amador, ”Importance of substrate rotation speed on the growth of homogeneous ZnO thin films by reactive sputtering”, Mater. Lett., 169, pp. 1–4, 2016.
    [2] X.X. Peng, R. Zuo, H.Q. Yu, and J.S. Chen, ”Design and numerical simulation of a multi-wafer hot-wall MOCVD reactor”, J. Synth. Cryst., 40, pp. 207–212, 2011.
    [3] M.L. Tsai, C.C. Fang, and L.Y. Lee, ”Numerical simulation of the temperature distribution in a planetary MOCVD reactor”, Chem. Eng. Process., 81, pp. 48–58, 2014.
    [4] P.A. Gkinis, I.G. Aviziotis, E.D. Koronaki, G.P. Gakis, and A.G. Boudouvis, ”The effects of flow multiplicity on GaN deposition in a rotating disk CVD reactor”, J. Cryst. Growth., 458, pp. 140–148, 2017.
    [5] C.H. Lin, W.T. Cheng, and J.H. Lee, ”Effect of embedding a porous medium on the deposition rate in a vertical rotating MOCVD reactor based on CFD modeling”, Int. Commun. Heat Mass., 36, pp. 680–685, 2009.
    [6] P. Mishra, B. Monroe, B. Hussain, and I. Ferguson, ”Temperature Optimization for MOCVD based growth of ZnO thin films”, 11th Annual High-Capacity Optical Networks and Emerging/Enabling Technologies (Photonics for Energy), pp. 238–242, 2014.
    [7] Z. Zhang, H. Fang, H. Yan, Z. Jiang, J. Zheng, and Z. Gan, ”Influencing factors of GaN growth uniformity through orthogonal test analysis”, Appl. Therm. Eng., 91, pp. 53–61, 2015.
    [8] R. Mucciato, and N. Lovergine, “Detailed thermal boundary conditions in the 3D fluid-dynamic modelling of horizontal MOVPE reactors”, J. Cryst. Growth., 221, pp. 758–764, 2000.
    [9] B. Mitrovic, A. Gurary, and W. Quinn, ”Process conditions optimization for the maximum deposition rate and uniformity in vertical rotating MOCVD reactors based on CFD modeling”, J. Cryst. Growth., 303, pp. 323–329, 2007.
    [10] Z. Lia, H. Li, J. Zhang, J. Li, H. Jianga, X. Fua, Y. Han, Y. Xia, Y. Huang, J. Yin, L. Zhang, and S. Hu, ”A susceptor with partial-torus groove in vertical MOCVD reactor by induction heating”, Int. J. Heat Mass Tran., 75, pp. 410–413, 2014.
    [11] S.M. Liu, S.L. Gu, S. M. Zhu, J. D. Ye, W. Liu, R. Zhang, and Y. D. Zheng, ”Numerical and experimental comparative study of metal-organic chemical vapor deposition of ZnO”, J. Vac. Sci. Technol., 25, pp. 187–190, 2007.
    [12] X.F. Han, M.J. Hur, J.H. Lee, Y.J. Lee, C.S. Oh, and K.W. Yi, ”Numerical simulation of the gallium nitride thin film layer grown on 6-inch wafer by commercial multi-wafer hydride vapor phase epitaxy”, J. Cryst. Growth, 406, pp. 53–58, 2014.
    [13] X. Yang, Y. Wu, X. Huang, V. Barrioz, G. Kartopu, S. Monir, and J. C. Irvine, ”Numerical simulation of the deposition process and the epitaxial growth of cadmium telluride thin film in a MOCVD reactor”, Comput. Thermalences, 5, pp. 177–188, 2012.
    [14] W.A. Bryant, ”Kinetics of tungsten deposition by the reaction of wf6 and hydrogen”, J. Electrochem. Soc., 125, pp. 1534−1543, 1978.
    [15] D.L. Brors, J.A. Fair, and K. Monnig, “Low pressure chemical vapor deposition of tungsten silicide”, Semicond. Int., 7, pp 82−85, 1984.
    [16] Y. Pauleau, and P. Lami, “Kinetics and mechanism of selective tungsten deposition by LPCVD”. J. Electrochem. Soc., 132, pp. 2779−2784, 1985.
    [17] H. Korner, ”Selective low pressure chemical vapour deposition of tungsten: deposition kinetics, selectivity and film properties”, Thin Solid Films, 175, pp. 55−60, 1989.
    [18] Y. Lv, J. Song, Y. Lian, Y. Yu, X. Liu, and Z. Zhuang, “The thermal properties of high purity and fully dense tungsten produced by chemical vapor deposition”, J. Nucl. Mater., 457, pp. 317−323, 2015.
    [19] D. Wang, J. Lao, W. Xiao, H. Qu, J. Wang, G. Wang, and J. Li, ”Theoretical adjustment of metalorganic chemical vapor deposition process parameters for high-quality gallium nitride epitaxial films”, Phys. Fluids., 35, 033306, pp. 1−13, 2023.
    [20] J. Li, J. Cai, Z. Wu, J. Wang, Y. Pei, and G. Wang, “Numerical simulation and study of the metal-organic chemical vapor deposition growth of ZnO film”, Phys. Fluids., 31, 027104, pp. 1−9, 2019.
    [21] K.J. Kuijlaars, C.R. Kleijn, and H.E. Akker, “Simulation of selective tungsten chemical vapor deposition” Mater. Sci. Semicond. Process, 1, pp. 43−54, 1998.
    [22] B. Kim, Y. Akiyama, N. Imaishi, and H. C. Park, “Modeling of tungsten thermal chemical vapor deposition”, Japanese J. Appl. Physics., 38, pp. 2881−2887, 1999.
    [23] E.J. McInerney, T.M. Pratt, and A. Taheri,” Design of a 300 mm: chemical vapor deposition tungsten reactor using computational fluid dynamics”, J. Vac. Sci., 17, pp. 1352−1355, 1999.
    [24] L. Raumann, J.W. Coenen, J. Riesch, Y. Mao, H. Gietl, T. Hoschen, C. Linsmeier, and O. Guillon, “Modeling and validation of chemical vapor deposition of tungsten for tungsten fiber reinforced tungsten composites”, Surf. Coat. Technol., 381, 124745, pp. 9−10, 2020.
    [25] L. Peng, H. Dong, S. Li, Z. Wang, X. Meng, Y. Wang, T. Liu, X. Li, and J. Ji,” Numerical simulation study on flow and heat transfer of the tungsten crucible CVD reactor”, ACS Omega, 7, pp. 42044−42055, 2022.
    [26] L. Raumann, J.W. Coenen, J. Riesch, Y. Mao, D. Schwalenberg, H. Gietl, C. Linsmeier, and O. Guillon, “Improving the W coating uniformity by a COMSOL model-based CVD parameter study for denser Wf/W composites” Metals (Basel), 11, pp. 1089, 2021.
    [27] 張勁燕,”半導體製程設備”,五南圖書出版公司,109-135頁,2002。
    [28] D. Ypsilanti, ”The semiconductor industry”, Bell& Howell Information and Learning Company, pp. 47−68, 1985.
    [29] M. Quirk, and J. Serda,” Semiconductor manufacturing technology”, Prentice Hall, pp. 253−295, 2000.
    [30] Applied Materials, Inc., Centura iSPIRIT™ SSW ALD/CVD, Applied Materials, https://www.appliedmaterials.com/tw/zh_tw/product-library/centura-isprint-ssw-ald-cvd.html.
    [31] S. Rao, ”Chemical vapour deposition”, Seminar,Malaviya National Institute of Technology, pp. 8−10, 2009.
    [32] P. Krishnan,” Chemical vapour deposition”, Seminar, pp. 8−10, 2009.
    [33] 高本輝和崔素言,”薄膜材料物理”,北京大學化學與分子工程學院表面與材料小組,pp. 5−30, 2025
    [34] K. Seshan, “Handbook of thin-film deposition processes and techniques”, Noyes Publications, William Andrew Publishing, 2, pp. 45−105, 2002.
    [35] O. Maksimov, ” Introduction to thin film growth and molecular beam epitaxy”, Seminar, pp. 13−16, 2013.
    [36] C.V. Thompson,” Structure evolution during processing of polycrystalline films”, Mater. Sci., 30, pp.159–190, 2000.
    [37] C.V. Thompson,” Grain growth in thin films”, Mater. Sci., 20, pp. 245–268, 1990.
    [38] R. Zuo, Q. Xu, and H. Zhang,” An inverse-flow showerhead MOVPE reactor design”, J. Crys. Growth, 298, pp. 425–427, 2007.
    [39] C.F. Tseng, T.Y. Tsai, Y.H. Huang, M.T. Lee, and R.H. Horng, “Transport phenomena and the effects of reactor geometry for epitaxial GaN growth in a vertical MOCVD reactor”, J. Crys. Growth, 432, pp54–63, 2015.
    [40] L. Hui, ”Mass transport analysis of a showerhead MOCVD reactor”, J. Semicond., 32, 3, pp. 1–5, 2011.
    [41] Q. Li, Y. Zhang, B. Ji, S. Zhang, and R. Tu, ”Improvement of SiC deposition uniformity in CVD reactor by showerhead with baffle ”, J. Crys. Growth, 615, 12725, pp. 12, 2003.
    [42] C.M. Mcconica, and K. Krishnamani, ”The kinetics of LPCVD tungsten deposition in a single wafer reactor”, J. Electrochem. Soc., 133, pp. 25422548, 1986.
    [43] C.R. Kleijin, C.J. Hoogendoorn, A. Hasper, J. Holleman, and J. Middelhoek, ”Transport phenomena in tungsten LPCVD in a single-wafer reactor”, J. Electrochem. Soc., 138, pp. 509517, 1991.
    [44] B. Kim, Y. Akiyama, N. Imaishi and H.C. Park, “Modeling of tungsten thermal chemical vapor deposition”, Jpn. J. Appl. Phys., 38, pp. 28812887, 1999.
    [45] W.T. Stacy, E.K. Broadbent, and M.H. Norcott,” Interfacial structure of tungsten layers formed by selective low pressure chemical vapor deposition”, J. EIectrochem. Soc., 132, 2, pp. 444448, 1985.
    [46] K. Hayakawa, M. Kimura and Y. Chiba,” Simulating the profile of thin metallic films produced by low-pressure CVD”, Semicond. Sci. Technol., 13, pp. 1355–1363, 1998.
    [47] F.R. Menter, Ansys Germany GmbH, Best Practice: Scale-Resolving Simulations in Ansys CFD, Ansys.com, https://www.ansys.com/products/fluids/ansys-fluent, pp. 3760, 2021.
    [48] H. Fang, Z. Zhang, Y. Pan, R. Ma, S. Liu, and M. Wang,” Systematic study of epitaxy growth uniformity in a specific MOCVD reactor”, Cryst. Res. Technol., 49, pp. 907–918, 2014.

    無法下載圖示 校內:2030-08-11公開
    校外:2030-08-11公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE