簡易檢索 / 詳目顯示

研究生: 黃意嵐
Huang, I-Lan
論文名稱: 以曝光製程於聚合物穩定型液晶盒製作液晶透鏡與透鏡陣列的影響與性能之研究
Study of optical performance and issues of polymer stabilized liquid crystal lenses and lens arrays fabricated by photo exposure process
指導教授: 許家榮
Sheu, Chia-Rong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 85
中文關鍵詞: 聚合物穩定型液晶液晶透鏡陣列
外文關鍵詞: polymer stabilized liquid crystal, liquid crystal lens arrays
相關次數: 點閱:241下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究以光聚合單體與液晶之混合物,藉由氦氖雷射光束穿過圓形透光圖樣光罩後其在不同樣品位置的光強度分佈進行曝光,探討此法所製作之液晶透鏡及液晶透鏡陣列之性能,包括不同光強度分佈對透鏡能力的影響、透鏡焦距、成像對比度等。由於考量單一圓形透光圖樣光罩與圓形陣列透光圖樣光罩對入射光所產生的光強度分佈會有差異,實驗分別對單一液晶透鏡與液晶透鏡陣列進行分析。在單一液晶透鏡中,實驗發現曝光的光強度梯度較小時,所製作之聚合物透鏡具有較長焦距的凸透鏡特性,且具有電控調制焦距的能力。當光強度梯度(斜率)為131時其透鏡成像能力最佳,成像對比度約在37.267%。實驗中亦針對不同孔徑的圓形透光圖樣光罩所製作之透鏡能力最佳時是否具有一致的光強度分佈之斜率進行討論。
    根據單一液晶透鏡的最佳製程條件進行液晶透鏡陣列製作,實驗結果發現透鏡陣列相較於單一透鏡的性能下降,最佳的成像對比度為23.884%。透鏡陣列性能降低的主要原因是圓孔陣列週期間距為140 μm時導致不同孔洞位置的光強度分佈相互影響而與單一透鏡曝光時的光強度分佈有差異。因此,將圓孔陣列週期間距改成180 μm,實驗結果得到成像對比度提升到31.637%的效果。

    In this thesis, electro-optical performance of liquid crystal (LC) lenses and lens arrays fabricated in the cells filled with mixture of photo curable monomers and liquid crystals by means of photo exposure processes with various intensity distributions are investigated.
    Considering the possible difference of light intensity distributions passed through the photo masks and exposed on the processing cells, liquid crystal lenses and lens arrays were fabricated and investigated, respectively. But, the conditions for lens array fabrications were as same as the optimal conditions for single LC lens.
    The experimental results show that the better performance is available in the fabricated lenses than that in the lens arrays. The possible reason is from the significant difference of light intensity distributions on the processing cells for individual lens and lens array fabrications.

    摘要 I ABSTRACT III 致謝 IX 目錄 X 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 6 第二章 液晶介紹 7 2.1 液晶簡介 7 2.2 液晶的分類 8 2.3 液晶物理特性 12 2.4 聚合物添加於液晶的樣品分類21 第三章 實驗原理 22 3.1 折射率梯度分佈透鏡 22 3.2 聚合物曝光之化學反應 23 3.3 非均勻光強度曝光建構方法 25 第四章 實驗材料與裝置 29 4.1 樣品配製 29 4.2 實驗方法 33 4.3 實驗架構 38 第五章 實驗結果與討論 44 5.1 以光強度分佈製作單一透鏡之光電特性量測44 5.2 以不同孔徑光罩製作單一透鏡之光電特性量測57 5.3 透鏡陣列之光電特性量測61 5.4 可調焦微透鏡陣列性能之討論76 第六章 結論與未來展望 78 6.1 結論 78 6.2 未來展望 79 參考文獻 81

    [1]Y. Lei, Q. Tong, X. Zhang, H. Sang, A. Ji, C. Xie, “An electrically tunable plenoptic camera using a liquid crystal microlens array,” Rev. Sci. Instrum. 86(5), 053101 (2015)
    [2]H. Kwon, Y. Kizu, Y. Kizaki, M. Ito, M. Kobayashi, R. Ueno, K. Suzuki, and H. Funaki, “A gradient index liquid crystal microlens array for light-field camera applications,” IEEE Photon. Technol. Lett. 27(8), 836-839 (2015)
    [3]J. Kim, Y. Jeong, H. Kim, C. K. Lee, B. Lee, J. Hong, Y. Kim, Y. Hong, S. D. Lee, and B. Lee, “F-number matching method in light field microscopy using an elastic micro lens array,” Opt. Lett. 41, 2751–2754 (2016).
    [4]K. C. Kwon, Y. T. Lim, C. W. Shin, M. U. Erdenebat, J. M. Hwang, and N. Kim, “Enhanced depth-of-field of an integral imaging microscope using a bifocal holographic optical element-micro lens array,” Opt. Lett. 42(16), 3209-3212 (2017)
    [5]H. Hua, B. Javidi, “A 3D integral imaging optical see-through head-mounted display,” Opt. Exp. 22(11), 13484-13491 (2014)
    [6]H. Huang and H. Hua, “An integral‐imaging‐based head‐mounted light field display using a tunable lens and aperture array,” J. Soc. Inf. Display 25, 200–207 (2017).
    [7]C. W. Chen, Y. P. Huang, and P. C. Chen, “Dual direction overdriving method for accelerating 2D/3D switching time of liquid crystal lens on auto-stereoscopic display,” J. Display Technol. 8(10), 559–561 (2012).
    [8]J. H. Na, S. C. Park, S. U. Kim, Y. Choi, and S. D. Lee, “Physical mechanism for flat-to-lenticular lens conversion in homogeneous liquid crystal cell with periodically undulated electrode,” Opt. Express 20(2), 864–869 (2012).
    [9]A. Hassanfiroozi, Y. P. Huang, B. Javidi, H. P. D. Shieh, “Hexagonal liquid crystal lens array for 3D endoscopy,” Opt. Exp., 23(2), 971-981 (2015).
    [10]Y. P. Huang, P. Y. Hsieh, A. Hassanfiroozi1, C. Y. Chu, Y. Hsuan, M. Martinez, B. Javidi, “Liquid crystal lens array for 3D microscopy and endoscope application,” Proc. SPIE 9867, 986701-986706(2016)
    [11]D. Fan, C. Wang, B. Zhang, Q. Tong, Y. Lei, Z. Xin, D. Wei, X. Zhang, and C. Xie, “Arrayed optical switches based on integrated liquid-crystal microlens arrays driven and adjusted electrically,” Appl. Opt. 56, 1788–1794(2017)
    [12]S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
    [13]T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31, 1643 (1992)
    [14]M. Ye, B. Wang, S. Sato, “Liquid crystal lens with a focal length that is variable in a wide range", Appl. Opt. 43(35), 6407-6412 (2004).
    [15]J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Cylindrical Liquid Crystal Microlens Array with Rotary Optical Power and Tunable Focal Length,” IEEE Elect. Dev. Lett. 36(6), 582–584 (2015).
    [16]H. T. Dai, Y. J. Liu, X. W. Sun, and D. Luo, “A negative-positive tunable liquid-crystal microlens array by printing,” Opt. Express 17(6), 4317–4323 (2009).
    [17]H. Xianyu, S. T. Wu, and C. L. Lin, “Dual frequency liquid crystals: a review,” Liquid Crystals 36, 717–726 (2009).
    [18]Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96, 113505 (2010).
    [19]Y. Li, Y. Liu, Q. Li, and S. T. Wu, “Polarization independent blue-phase liquid crystal cylindrical lens with a resistive film,” Appl. Opt. 51(14), 2568–2572 (2012).
    [20]J. H. Yu, H. S. Chen, P. J. Chen, K. H. Song, S. C. Noh, J. M. Lee, H. Ren, Y. H. Lin, and S. H. Lee, “Electrically tunable microlens arrays based on polarization-independent optical phase of nano liquid crystal droplets dispersed in polymer matrix,” Opt. Express 23(13), 17337–17344 (2015).
    [21]X. Wang, H. Ren, and Q. Wang, “Polymer network liquid crystal (PNLC) lenticular microlens array with no surface treatment,” J. Display Technol., 773–778(2016)
    [22]J. Sun, S. Xu, H. Ren, S.‐T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett. 102, 161106 (2013)
    [23]O. Pishnyak, S. Sato, and O. D. Lavrentovich, “Electrically tunable lens based on a dual-frequency nematic liquid crystal,” Appl. Opt. 45(19), 4576–4582 (2006).
    [24]H. Huang, C. Wen, and S. Wu, “Polarization-independent and submillisecond response phase modulators using a 90 degrees twisted dual frequency liquid crystal,” Appl. Phys. Lett. 89, 021103 (2006).
    [25]S. Xu, Y. Li, Y. Liu, J. Sun, H. Ren, and S. T. Wu, “Fast-Response Liquid Crystal Microlens,” Micromachines 5, 300-324 (2014).
    [26]H. Ren and S. T. Wu, “Inhomogeneous nanoscale polymer-dispersed liquid crystals with gradient refractive index,” Appl. Phys. Lett. 81(19), 3537–3539 (2002).
    [27]H. Ren, S. T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82, 22–24 (2003).
    [28]H. Ren, Y. H. Fan and S. T. Wu, “Polymer network liquid crystals for tunable microlens arrays,” J. Phys. D: Appl. Phys. 37, 400–403(2004)
    [29]M. Xu, Z. Zhou, H. Ren, S. H. Lee, and Q. Wang, “A microlens array based on polymer network liquid crystal,” J. Appl. Phys. 113, 053105 (2013).
    [30]R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,” Chem. Mater. 5, 1533-1538 (1993).
    [31]S. T. Wu and A. Y. G. Fuh, “Lasing in photonic crystal based on dye-doped holographic polymer-dispersed liquid crystal reflection gratings,” Jpn. J. Appl. Phys. 44(2), 977–980 (2005)
    [32]R. A. Ramsey and S. C. Sharma, “Switchable holographic gratings formed in polymer-dispersed liquid-crystal cells by use of a He-Ne laser,” Opt. Lett. 30(6), 592–594 (2005).
    [33]松本正一・角田市良,“液晶之基礎與應用,” 第八版, 第一、二、九章,國立編譯館, 民國94年
    [34]田民波,“TFT液晶顯示原理與應用,”初版,第二章,五南圖書出版有限公司, 2008年
    [35]D. K. Yang, S. T. Wu, “Fundamentals of Liquid Crystal Devices,” Chap. 1,11, John Wiley & Sons, 2006
    [36]徐武軍,“高分子材料導論,”初版,第一章,五南圖書出版有限公司, 2004年
    [37]J. W. Doane, N. A. Vaz, B. G. Wu and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48, 269-271(1986)
    [38]C. V. Rajaram, S. D. Hudson, L. C. Chien, “Morphology of Polymer-Stabilized Liquid Crystals,” Chem. Mater. 7, 2300¬-2308 (1995)
    [39]G. Odian, “Principle of Polymerization ,” 4th. Edition, Chap. 2, John Wiley & Sons (2004)
    [40]Eugene Hecht, “Optics,” 4th .Edition, Chap. 10, Addison Wesley(2002)
    [41]F. L. Pedrottti, L. M. Pedrottti, L. S. Pedrottti, “Introduction To Optics ,” 4th . Edition, Chap. 11, Pearson International (2007)
    [42]L. C. Khoo, “Liquid Crystals,” 2nd. Edition, Chap. 1, John Wiley & Sons (2007)
    [43]W. Zheng and M. Y. Su, “Holographic interference field-induced localized orientational structures in diacrylate-based polymers,” Appl. Phys. Express 7 071603 (2014)
    [44]“Holographic patterning of polymer dispersed liquid crystal materials for diffractive optics elements,” Ph. D. disserta-tion, University of Texas at arlington (2006)
    [45]R. T. Poguea, L. V. Natarajana, S. A. Siweckia, V. P. Tondigliaa, R. L. Sutherlanda, T. J. Bunningb, “Monomer functionality effects in the anisotropic phase separation of liquid crystals,” Polymer 41, 733–741 (2000)
    [46]Spectra group Limited Inc., “Photoinitiators, enabling technology in photochemistry photochemical products and services contract research and development”
    [47]J. Wang, X. Xiao, H. Hua, and B. Javidi, “Augmented reality 3D displays with micro integral imaging,” J. Display Technol. 11(11), 889-893(2015)

    無法下載圖示 校內:2020-08-05公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE