簡易檢索 / 詳目顯示

研究生: 李昭緯
Lee, Chao-Wei
論文名稱: ZSM-5沸石擔載鎳鉬金屬於棕櫚酸氫化反應以製備生質燃料之研究
Study on Hydrotreatment of Palmitic Acid for Biofuel Production with Ni/Mo Bimetallic ZSM-5 Catalysts
指導教授: 陳炳宏
Chen, Bing-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 107
中文關鍵詞: 生質燃料棕櫚酸ZSM-5型沸石鎳鉬雙金屬觸媒加氫脫氧
外文關鍵詞: Biofuel, Palmitic acid, Zeolite ZSM-5, Ni-Mo/ZSM5, Hydrodeoxygenation
相關次數: 點閱:204下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著人口的增長,運輸需求與石油燃料的開發增加溫室氣體的排放,在有限的資源下,人類開始發展可再生生物燃料以提供傳統石化燃料未來短缺的龐大需求。過去幾年,三酸甘油酯的植物油可透過液相固體觸媒催化酯交換法,生產具有優勢與環保的生質柴油。生質柴油與石化燃料相比存在幾個缺點,例如生質油具有高氧含量導致低溫流動性差和低能量密度,而透過加氫處理的燃料具有與石化燃油相似的性質,可作為更佳的替代生質油,並可直接使用化工廠內固有的石油精煉基礎設施來加氫處理提高油料價值。除了能提供未來能源缺乏的需求之外,也能大幅降低石化燃油造成的空氣汙染和溫室效應問題,使生質能進入自然碳循環中。加氫處理中需要加入適當的催化劑來降低反應條件與增加反應速率,其中會使用到雙功能型觸媒來達到增效的作用,改質的金屬位點主要提供加氫與脫氫所需要的活性點,而催化劑中酸性位點具有異構化與裂化的功能。本實驗考慮透過異相觸媒方式,具有方便回收使用與降低分離成本的優勢,因此,選用研究以探討異相雙金屬雙功能型觸媒進行生質燃油的反應。
    本研究以商用酸性ZSM-5型沸石作為主要的載體,其具有高比表面積能夠均勻分散金屬觸媒擔體,降低金屬的使用量與提高其分散性,並提供酸性活性點進行加氫裂化及異構化反應,利用設備方便的含浸法擔載鎳與鎳鉬活性金屬,作為氫溢流活化氫氣的活性位,比較添加鉬金屬是否比單純鎳金屬具備有更好的加氫脫氧活性。此外,亦透過質譜儀來分析液相產物中異構物或是低碳數的碳氫化合物成分,期望生產出具備有類石化燃料的生質燃油,應用於未來更進一步生質能研究。由實驗結果可知,於棕櫚酸:改質觸媒=1 : 0.25重量比條件下,鎳鉬觸媒轉化率在300°C與氫氣壓力35 bar下,4小時成功達到99%,擔載鎳鉬的改質觸媒具有更優於擔載鎳觸媒的加氫脫氧活性,而經過轉換後,可以發現碳數下降,裂解反應將脫氧的正十六烷轉化為低碳數的碳氫物質。

    In this study, Ni/Mo bimetallic catalysts supported on zeolite ZSM-5 catalysts, aka Ni-Mo/ZSM5, were successfully prepared by the wetness impregnation method to heterogeneously hydrotreat palmitic acid with an aim for the production of liquid alkane fuels. A Ni-content about 10 wt% of zeolite ZSM-5 support with various Mo-contents was found on these Ni-Mo modified catalysts. Various instruments, such as XRD, SEM, BET, XPS, NH3-TPD, SQUID and H2-TPR, were employed to characterize these catalysts. Typically, the catalyzed hydrodeoxygenation (HDO) reaction of palmitic acid was carried out in a batch autoclave at 573 K with an initial pressure of hydrogen at 35 bar at this temperature. With Ni-Mo(R)/ZSM5 catalysts, the conversion of palmitic acid could reach near 99% at 573K after HDO reaction for 4h. Furthermore, a significant portion of isomerized alkanes were obtained in the product as revealed by GC-MS. That is, both hydrodeoxygenation (HDO) and hydroisomerization reactions took place conjointly with Ni-Mo(R)/ZSM5 catalysts.

    摘要 I Abstract II 致謝 XXIII 目錄 XXIV 圖目錄 XXVIII 表目錄 XXXI 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 3 第二章 文獻回顧 4 2-1 生質能源的開發 4 2-1-1 簡介 4 2-1-2 生質航空燃油發展 5 2-1-3 生質燃油發展方向 6 2-1-4 國內生質燃料的需求與應用前景 8 2-2 加氫催化 9 2-2-1 催化劑基本原理 9 2-2-2 加氫脫氧催化劑 9 2-2-3 反應條件影響因子 12 2-3 加氫異構化 12 2-4 氫溢流 14 2-5 生質燃油高值化技術 15 2-5-1 方法 17 2-6 加氫脫氧反應機制 20 2-7 沸石觸媒 21 2-7-1 沸石的簡介與歷史 21 2-7-2 沸石的結構 23 2-7-3 沸石的特性與應用 29 2-7-4 ZSM-5型沸石簡介 32 2-8 觸媒改質方法 33 第三章 實驗 34 3-1 研究架構及流程 34 3-2 實驗藥品及實驗設備 35 3-2-1 實驗藥品 35 3-2-2 實驗設備 36 3-2-3 高溫高壓反應器 38 3-2-4 觸媒還原反應爐 39 3-3 實驗方法 40 3-3-1 以含浸法擔載鎳與鉬金屬於商用ZSM-5型觸媒 40 3-3-2 氫氣還原以活化觸媒 40 3-3-3 高溫高壓加氫反應 41 3-3-4 液相產物檢量線製作 41 3-3-5 加氫反應液相產物分析 42 3-4 分析方法 43 3-4-1 加氫反應液相產物分析 43 3-4-1-1 氣相層析儀 43 3-4-1-2 氣相質譜儀 44 3-4-2 觸媒鑑定與分析 45 3-4-2-1 X光繞射分析儀 45 3-4-2-2 掃描式電子顯微鏡 46 3-4-2-3 傅立葉紅外線光譜分析儀 47 3-4-2-4 比表面積儀 47 3-4-2-5 熱重分析儀 49 3-4-2-6 程溫脫附儀 50 3-4-2-7 氫氣程溫還原反應 50 3-4-2-8 X射線光電子能譜儀 51 3-4-2-9 感應耦合電漿原子發射光譜儀 52 3-4-2-10 超導量子干涉儀 53 第四章 結果與討論 54 4-1 觸媒鑑定與特性分析 54 4-1-1 鎳鉬改質ZSM-5觸媒XRD鑑定 54 4-1-2 鎳鉬改質ZSM-5觸媒SEM-EDS與ICP鑑定 57 4-1-3 鎳鉬改質ZSM-5觸媒FTIR鑑定 59 4-1-4 鎳鉬改質ZSM-5觸媒XPS鑑定 61 4-1-5 鎳鉬改質ZSM-5觸媒H2-TPR鑑定 65 4-1-6 鎳鉬改質ZSM-5觸媒BET鑑定 67 4-1-7 鎳鉬改質ZSM-5觸媒NH3-TPD鑑定 73 4-1-8 鎳鉬改質ZSM-5觸媒CO2-TPD鑑定 75 4-1-9 鎳鉬改質ZSM-5觸媒TGA鑑定 77 4-1-10 鎳鉬改質ZSM-5觸媒磁性鑑定 78 4-2 觸媒高溫高壓加氫反應活性 82 4-2-1 液相產物GC-MS分析 82 4-2-2 觸媒種類對氫化反應的影響 86 4-2-3 觸媒使用量對氫化反應的影響 87 4-2-4 液相產物FTIR分析 92 第五章 結論 93 參考文獻 94 附錄 100

    Ab Gapor Md Top. Production and utilization of palm fatty acid distillate (PFAD). Lipid Technology, Vol. 22, No. 1 (2010)

    Ameen M, Azizana MT, Yusup S, Ramlic A, Yasir M. Catalytic hydrodeoxygenation of triglycerides: An approach to clean diesel fuel production. Renewable and Sustainable Energy Reviews, Vol 80, Pages 1072-1088 (2017)

    Ancheyta J, Speight JG. Hydroprocessing of heavy oils and residua. CRC press, FL, U.S.A (2007)

    Arun N, Sharma RV, Dalai AK. Green diesel synthesis by hydrodeoxygenation of bio-based feedstocks: Strategies for catalyst design and development. Renewable and Sustainable Energy Reviews, Vol 48, Pages 240-255 (2015)

    Bergthorson JM, Thomson MJ. A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines. Renewable and Sustainable Energy Reviews, Vol 42, Pages 1393-1417 (2015)

    Chatterjee A, Eliasson SHE, Jensen VR. Selective production of linear α-olefins via catalytic deoxygenation of fatty acids and derivatives. Catal. Sci. Technol., 8, 1487-1499 (2018)

    Chen S, Zhou G, Miao C. Green and renewable bio-diesel produce from oil hydrodeoxygenation: Strategies for catalyst development and mechanism. Renewable and Sustainable Energy Reviews, Vol 101, Pages 568-589 (2019)

    Choudhary TV, Phillips CB. Renewable fuels via catalytic hydrodeoxygenation. Applied Catalysis A: General, Vol 397, Issues 1–2, Pages 1-12 (2011)

    Conner, JrWC, Falconer JL. Spillover in Heterogeneous Catalysis. Chemical Reviews, 95 (3), Pages 759-788 (1995)

    Coonradt HL, Garwood WE. Mechanism of hydrocracking: Reactions of paraffins and olefins. Ind. Eng. Chem. Proc. Des, 3, 1, Pages 38-45 (1964)

    Daza L, Pawelec B, Anderson JA, Fierro JLG. Relationship between reduced nickel and activity for benzene hydrogenation on Ni-USY zeolite catalysts. Applied Catalysis A: General, Vol 87, Issue 1, Pages 145-156 (1992)

    Dika PP, Danilovaa IG, Golubev IS. Hydrocracking of vacuum gas oil over NiMo/zeolite-Al2O3: Influence of zeolite properties. Fuel, Vol 237, Pages 178-190 (2019)

    Ekaterini CV, Lemonidou AA. Hydrogen production via steam reforming of bio-oil components over calcium aluminate supported nickel and noble metal catalysts. Applied Catalysis A: General, Vol 351, Issue 1, Pages 111-121 (2008)

    Foglia TA, Barr PA. Decarbonylation dehydration of fatty acids to alkenes in the presence of transition metal complexes. American Oil Chemists Society, Vol 53, Issue 12, Pages 737–741 (1976)

    Gagnon J, Kaliaguine S. Catalytic hydrotreatment of vacuum pyrolysis oils from wood. Industrial & Engineering Chemistry Research, 27 (10), 1783-1788 (1988)

    Ghosh D, Giri S, Das KC. Synthesis, characterization and electrochemical performance of graphene decorated with 1D NiMoO4·nH2O nanorods. Nanoscale, Issue 21 (2013)

    Hermida L, Abdullah ZA, Mohamed AR. Deoxygenation of fatty acid to produce diesel-like hydrocarbons: A review of process conditions, reaction kinetics and mechanism. Renewable and Sustainable Energy Reviews, Vol 42, Pages 1223-1233 (2015)

    He Z, WangX. Hydrodeoxygenation of model compound sand catalytic systems for pyrolysis bio-oils upgrading. Catalysis for Sustainable Energy, 1, Pages 28-52 (2012)

    Jamil F, Bawadi A, Ahmad MM, Inayat A, Yusup S. Catalytic cracking of synthetic bio-oil: kinetic studies. Applied Mechanics and Materials, Vol. 625, Pages 259-262 (2014)
    Jin W, Pastor-Perez L, Shen D, Sepulveda-Escribano A, Gu S, Ramirez Reina T. Catalytic upgrading of biomass model compounds: Novel approaches and lessons learnt from traditional hydrodeoxygenation–a review. ChemCatChem, 11, Pages 924–960 (2019)

    John A, Hillmyer MA, Tolman WB. Anhydride-additive-free nickel-catalyzed deoxygenation of carboxylic acids to olefins. Organometallics, 36, 506−509 (2016)

    Kukushkin RG, Bulavchenko OA, Kaichev VV, Yakovlev VA. Influence of Mo on catalytic activity of Ni-based catalysts in hydrodeoxygenation of esters. Applied Catalysis B: Environmental, Vol 163, Pages 531-538 (2015)

    Lee H, Kim H, Yu MJ. Catalytic Hydrodeoxygenation of bio-oil model compounds over Pt/HY catalyst. Scientific Reports, Vol 6 (2016)

    Li N, Bi Y, Xia Z, Chen H, Hu J. Hydrodeoxygenation of methyl laurate over Ni catalysts supported on hierarchical HZSM-5 zeolite. Catalysts, Vol 7, Issue 12, Pages 383 (2017)

    Likang Z. Catalytic hydrodeoxygenation and hydroisomerization of biolipid over hierarchical ZSM-22 with core-shell structure. Ind. Eng. Chem. Res., 34, 1074 (1995)

    Manuel A. Ortuño, Núria López. Creating cavities at palladium−phosphine interfaces for enhanced selectivity in heterogeneous biomass conversion. ACS Catalysis, 8 (7), 6138-6145 (2018)

    Mendes MJ, Santos OAA, Jordao E, Silva AM. Hydrogenation of oleic acid over ruthenium catalysts. Applied Catalysis A: General, Vol 217, Issues 1–2, Pages 253-262 (2001)

    Minami E, Saka S. Comparison of the decomposition behaviors of hard wood and soft wood in supercritical methanol. Journal of Wood Science, Vol 49, Issue 1, Pages 73-78 (2003)

    Mohammad M, Hari TK, Yaakob Z, Sharma YC, Sopian K. Overview on the production of paraffin based-biofuels via catalytic hydrodeoxygenation. Renewable and Sustainable Energy Reviews, Vol 22, Pages 121-132 (2013)
    Mortensen PM, Grunwaldt JD, Jensen PA, Knudsen KG, Jensen AD. A review of catalytic upgrading of bio-oil to engine fuels. Applied Catalysis A: General, Vol 407, Issues 1–2, Pages 1-19 (2011)

    Naya R. Upgrading of bio-liquids on different mesoporous silica-supported CoMo catalysts. Applied Catalysis B: Environmental, Vol 92, Issues 1–2, Pages 154-167 (2009)

    Ooia XY, Gaoa W, Onga HC. Overview on catalytic deoxygenation for biofuel synthesis using metal oxide supported catalysts. Renewable and Sustainable Energy Reviews, 112, Pages 834–852 (2019)

    Pattanaik BP. Effect of reaction pathway and operating parameters on the deoxygenation of vegetable oils to produce diesel range hydrocarbon fuels: A review. Renewable and Sustainable Energy Reviews, Vol 73, Pages 545-557 (2017)

    Plyuto YV, Babich IV. XPS studies of MoO3/A12O3 and MoO3/SiO2 systems. Applied Surface Science, Vol 119, Pages 11-18 (1997)

    Rashid U, Yusup S, Taiwo TG, Ahmad MM. Blending study of palm oil methyl esters with jatropha oil methyl esters to improve fuel properties. Biomass & renewables, 1, Pages 27-31 (2012)

    Romero Y, Richard F, Brunet S. Hydrodeoxygenation of 2-ethylphenol as a model compound of bio-crude over sulfide Mo-based catalysts: Promoting effect and reaction mechanism. Applied Catalysis B Environmental, 98, Pages 213-223 (2010)

    Romney R, Charley R. Forest chemicals review. International yearbook; New Orleans; Kriedt Enterprises (2004)

    Top AGM. Production and utilization of palm fatty acid distillate (PFAD). Lipid Technol, 22(1):11–3 (2010)

    Wang H, Yan S, Salley SO, Ng KYS. Hydrocarbon fuels production from hydrocracking of soybean oil using transition metal carbides and nitrides supported on ZSM-5. Industrial & Engineering Chemistry Research, 51, 10066-10073 (2012)

    Santillan-Jimenez E, Crocker M. Catalystic deoxygenation of fatty acids and their derivatives to hydrocarbon fuels via decarboxylation/decarbonylation. J Chem Technol Biotechnol, 87, Pages 1041-1050 (2012)

    Santillan-Jimenez E, Morgan T, Lacny J, Mohapatra S, Crocker M. Catalytic deoxygenation of triglycerides and fatty acids to hydrocarbons over carbon-supported nickel. Fuel, Vol 103, Pages 1010-1017 (2013)

    Sari E, Kim M, Salley SO, Simon NKY. A highly active nanocomposite silica-carbon supported palladium catalyst for decarboxylation of free fatty acids for green diesel production: correlation of activity and catalyst properties. Applied Catalysis A: General, Vol 467, Pages 261-269 (2013)

    Senol OI., Viljava TR, Krause AOI. Effect of sulphiding agents on the hydrodeoxygenation of aliphatic esters on the sulphided catalyst. Applied Catalysis A: General, Vol 326, Issue 2, Pages 236-244 (2007)

    Stakheev AY, Kustov LM. Effects of the support on the morphology and electronic properties of supported metal clusters: modern concepts and progress. Applied Catalysis A: General, Vol. 188, Issues 1–2, Pages 3-35 (1999)

    Tran N, Uemura Y, Chowdhury S, Ramli A. A review of bio-oil upgrading by catalytic hydrodeoxygenation. Applied Mechanics and Materials, Vol. 625, Pages 255-258 (2014)

    Xiu S, Shahbazi A. Bio-oil production and upgrading research: A review. Renewable and Sustainable Energy Reviews, Vol 16, Issue 7, Pages 4406-4414 (2012)

    Yaman S. Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Conversion and Management, Vol 45, Issue 5, Pages 651-671 (2004)
    Yao D, Yanga H, Chena H, Williamsb PT. Investigation of nickel-impregnated zeolite catalysts for hydrogen/syngas production from the catalytic reforming of waste polyethylene. Applied Catalysis B: Environmental, Vol 227, Pages 477-487 (2018)

    Zhang SP, Yan YJ, Ren JW, Li TC. Study of hydrodeoxygenation of bio-oil from the fast pyrolysis of biomass. Energy Sources, Vol 25, Issue 1 (2003)

    Zhang Q, Chang J, Wang T, Xu Y. Review of biomass pyrolysis oil properties and upgrading research. Energy Conversion and Management, Vol 48, Issue 1, Pages 87-92 (2007)

    Zhao X, Wei L, Cheng S, Julson J. Review of heterogeneous catalysts for catalytically upgrading vegetable oils into hydrocarbon biofuels. Catalysts, 7, 83 (2017)

    黃仲濤, 耿建明. 工業催化. (2006)

    謝哲隆. 生質物熱解液化轉製航空生質燃料用油技術. (2014)

    下載圖示 校內:2024-07-08公開
    校外:2024-07-08公開
    QR CODE