| 研究生: |
陳順莉 Chen, Shun-Li |
|---|---|
| 論文名稱: |
利用蛋白質體學方法對生物相似藥物進行廣泛性的分析比較 Analysis of Biosimilars by Proteomic Approaches |
| 指導教授: |
陳淑慧
Chen, Shu-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 液相層析質譜儀 、生物相似藥物 |
| 外文關鍵詞: | liquid chromatography-mass spectrometry (LC-MS), biosimilar |
| 相關次數: | 點閱:118 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這項研究中,利用液相層析質譜儀為基礎的蛋白質體分析方法對市售的免疫球蛋白G(Immunoglobulin G, IgG)進行廣泛性之結構鑑定且進一步與藥廠生產的生物相似藥物作一生物相似性分析比較。一開始利用還原性(reduction)及非還原(without reduction)性搭配多種酵素水解消化的策略,並以液相層析串聯式質譜儀(LC-MS/MS)進行胜肽圖譜鑑定(peptide mapping)的方式測定其基本結構序列。透過這個方法我們充分地驗證其一級結構序列 (序列覆蓋率100%)、雙硫鍵連接位址以及轉譯後修飾的發生,其中轉譯後修飾包括醣基化、甲硫胺酸的氧化(Met oxidation)、天冬醯胺的去胺化(Asn deamidation)、N-端麩氨醯胺(Glutamine, E)的環化(pyro-glu)以及C-端賴胺酸(Lysine) 的消去(K clipping)。在早期生產的生物相似藥物中,我們鑑定出其序列包含兩個氨基酸變異(D359E和L361M),不過在最近生產的批次中已經被修正過來。不僅鑑定生物相似藥物及市售單株抗體之藥物具有相同的16段雙硫鍵,在Fc端的醣基化位址(N300)上也分析出其主要的醣基結構為G0、 G1以及G2,而這兩種產品也存在著相似的醣基分佈。N-端及C-端的修飾在生物相似藥物及市售藥物皆為非常相似;然而甲硫胺酸的氧化(Met oxidation)以及天冬醯胺的去胺化 (Asn deamidation) 這些典型的修飾在兩種產品間存在著微小的差異,可能是由於樣品儲存條件及緩衝溶液成分的不同所造成的。最後成功地利用不標定之定量方法,並搭配T-test統計方法找出市售藥物與生物相似藥物有顯著性差異 (significant difference)之處,以顯示出生物相似藥物與市售藥物之間的相似性及差異性,包括其變異的位址及修飾上的差異。儘管這兩個產品之間不完全相同,但是透過其產品的完整性與關鍵的結構信息,顯示出這兩個產品彼此間確實是具有生物相似性的。總之對於結構複雜的蛋白質藥物而言,液相層析質譜儀 (LC-MS)為基礎的蛋白質體分析是一功能強大的技術。
In this study, liquid chromatography-mass spectrometry (LC-MS)-based proteomics technique was developed to characterize a commercially available IgG1 monoclonal antibody (mAb) product in detail and further compare it with a candidate biosimilar. Multiple enzyme strategy was first developed to couple with mass mapping using LC-MS, and mass sequencing using LC-MS/MS. Through this approach, we were able to fully validate the primary sequence (100% sequence coverage) and the disulfide linkages which form the secondary structure, as well as protein post translational modifications (PTMs) including glycosylation, deamidation pyro-glu formation at the N-terminus, and K clipping at the C-terminus. Furthermore, using label-free quantification method, we were able to deduce the distribution among G0, G1, and G2 N-linked glycosylation at the conserved Fc site of the antibody. The techniques were also used to comprehensively compare the differences between the candidate biosimilar and the commercial mAb. Except two amino acid variants, D359E and L361M, which were intuitively designed by the manufacturer, insignificant differences between the biosimilar and the commercial product were detected, showing these two products were indeed biosimilar to each other. In conclusion, LC-MS based proteomics analysis is a powerful technique to reveal the critical structural complexity of protein drugs.
1. Lander, E. S.; Linton, L. M.; Birren, B.; Nusbaum, C.; Zody, M. C.; Baldwin J. et al. Initial sequencing and analysis of the human genome. Nature, 2001, 409, 860-921.
2. Venter, J. C.; Adams, M. D.; Myers, E. W.; Li, P. W.; Mural, R.J.; Sutton, G. G. et al. The sequence of the human genome. Science, 2001, 291, 1304-1351.
3. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Electrospray ionization for mass spectrometry of large biomolecules. Science, 1989, 246, 64-71.
4. Karas, M.; Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons . Anal. Chem., 1988, 60, 2299-2301.
5. Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T. Protein and Polymer Analyses up to m/z 100 000 by Laser Ionization Time-of flight Mass Spectrometry. Rapid Commun. Mass Spectrom., 1988, 2, 151.
6. Perkins, D. N.; Pappin, D. J.; Creasy, D. M.; Cottrell, J. S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis., 1999, 20, 3551-3567.
7. Eng, J. K.; McCormack, A. L.; Yates, J. R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom., 1994, 5, 976–989.
8. Chalkley, R. J.; Baker, P. R.; Huang, L.; Hansen, K.C.; Allen, N. P.; Rexach, M., Burlingame, A. L. Comprehensive Analysis of a Multidimensional Liquid Chromatography Mass Spectrometry Dataset Acquired on a Quadrupole Selecting, Quadrupole Collision Cell, Time-of-flight Mass Spectrometer. Mol. Cell. Proteomics., 2005, 4, 1194-1204
9. Geer, L.Y.; Markey, S.P.; Kowalak, J.A.; Wagner, L. Xu, M.; Maynard, D.M.; Yang, X.; Shi, W.; Bryant, S.H. Open mass spectrometry search algorithm. J. Proteome Res., 2004, 3, 958-64
10. Wasinger, V. C.; Cordwell, S. J.; Cerpa-Poljak, A.; Yan, J. X.; Gooley, A. A.; Wilkins, M. R.; Duncan, M. W.; Harris, R.; Williams, K. L.; Humphery-Smith, I. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis, 1995, 16, 1090-1094.
11. Vogl, T.; Roth, J.; Sorg, C.; Hillenkamp, F.; Strupat, K. Calcium-induced noncovalently linked tetramers of MRP8 and MRP14 detected by ultraviolet matrix-assisted laser desorption/ionization mass spectrometry. J. Am. Soc. Mass Spectrom., 1999, 10, 1124-1130.
12. 林佳葳,吳思緯,于心宜,邱繼輝。質譜分析技術之應用於醣質體學。CHEMISTRY (The Chinese Chemical Society, Taipei). 2007, 65, 125-136.
13. Dwek, R. A. Glycobiology: Toward understanding the function of sugars. Chem. Rev., 1996, 96, 683–720.
14. Rudd P.M.; Dwek, R. A. Glycosylation: heterogeneity and the 3D structure of proteins Crit. Rev. Biochem. Mol. Biol., 1997, 32, 1–100.
15. Daniels, M. A.; Hogquist K. A.; Jameson, S. C. Sweet ‘n’ sour: the impact of differential glycosylation on T cell responses. Nat. Immunol., 2002, 3, 903–910.
16. Dwek, M. V.; Ross H. A.; Leathem, A. J. C. Proteome and glycosylation mapping identifies post-translational modifications associated with aggressive breast cancer. Proteomics, 2001, 1, 756–762.
17. Freeze, H. H. Update and perspectives on congenital disorders of glycosylation. Glycobiology, 2001, 11, 129–143.
18. Pantophlet R.; Burton, D. R. GP120: target for neutralizing HIV-1 antibodies. Annu. Rev. Immunol., 2006, 24, 739–769.
19. Wang, L. X. Toward oligosaccharide- and glycopeptide-based HIV vaccines. Curr. Opin. Drug DiscoveryDev., 2006, 9, 194–206.
20. Zhou T.; Xu, L.; Dey, B.; Hessell, A. J.; Van Ryk, D.; Xiang, S. H.; Yang, X.; Zhang, M. Y.; Zwick, M. B.; Arthos, J.; Burton, D. R.; Dimitrov, D. S.;
Sodroski, J.; Wyatt, R. G.; Nabel, J.; Kwong, P. D. Kwong, Structural definition of a conserved neutralization epitope on HIV-1 gp120. Nature, 2007, 445, 732–737.
21. Slovin, S. F.; Keding, S. J.; Ragupathi, G. Carbohydrate vaccines as immunotherapy for cancer. Immunol. Cell Biol., 2005, 83, 418–428.
22. Musselli, C.; Livingston, P. O.; Ragupathi, G. Keyhole limpet hemocyanin conjugate vaccines against cancer: the Memorial Sloan Kettering experience. J. Cancer Res. Clin. Oncol., 2001, 127, 20–26.
23. Vlad, A. M.; Finn, O. J. Glycoprotein tumor antigens for immunotherapy of breast cancer. Breast Dis., 2004, 20, 73–79.
24. Apweiler, R.; Hermjakob, H.; Sharon, N. On the frequency of protein glycosylation, as deduced from analysis of the SWISSPROT database. Biochim. Biophys. Acta, 1999, 1473, 4–8.
25. Dell A.; Morris, H. R. Glycoprotein structure determination by mass spectrometry. Science, 2001, 291, 2351–2356.
26. Harvey, D. J. Proteomic analysis of glycosylation: structural determination of N and O-linked glycans by mass spectrometry. Expert Rev. Proteomics, 2005, 2, 87–101.
27. Nilsson, B. Analysis of protein glycosylation by mass spectrometry Mol. Biotechnol., 1994, 2, 243–280.
28. Park, Y.; Lebrilla, C. B. Application of Fourier transform ion cyclotron resonance mass spectrometry to oligosaccharides. Mass Spectrom. Rev., 2005, 24, 232-264.
29. Harvey, D. J. Proteomic analysis of glycosylation: structural determination of N- and O-linked glycans by mass spectrometry. Expert. Rev. Proteom., 2005, 2, 87-101.
30. Cancilla, M. T.; Penn, S. G.; Carroll, J. A.; Lebrilla, C. B. Coordinationof alkali metals to oligosaccharides dictates fragmentation behavior in matrix assisted laser desorption ionization Fourier transform mass spectrometry. J. Am. Chem. Soc., 1996, 118, 6736-6745.
31. Harvey, D. J. Analysis of Carbohydrates and Glycoconjugates by Matrix-Assisted Laser Desorption/ionization Mass Spectrometry: An Update for 2003-2004. Mass Spectrom Rev., 2009, 28, 273-361.
32. Kang, P., Mechref, Y., Kyselova, Z., Goetz, J. A.; Novotny, M. V. Comparative glycomic mapping through quantitative permethylation and stable-isotope labeling. Anal. Chem., 2007, 79, 6064-6073.
33. Dalpathado, D.S.; Desaire, H. Glycopeptide analysis by mass spectrometry. Analyst, 2008, 133, 731-738.
34. Huddleston, M. J.; Bean, M. F.; Carr, S. A. Collisional fragmentation of glycopeptides by electrospray ionization LC/MS and LC/MS/ MS: methods for selective detection of glycopeptides in protein digests. Anal. Chem. 1993, 65, 877-884.
35. Ito, H.; Takegawa, Y., Deguchi, K.; Nagai, S.; Nakagawa, H.; Shinohara, Y.; Nishimura, S. I. Direct structural assignment of neutral and sialylated N-glycans of glycopeptides using collision-induced dissociation MSn spectral matching. Rapid. Commun. Mass. Spectrom., 2006, 20, 3557-3565.
36. Zhao, J.; Simeone, D. M.; Heidt, D.; Anderson, M. A.; Lubman, D. M. Comparative serum glycoproteomics using lectin selected sialic acid glycoproteins with mass spectrometric analysis: application to pancreatic cancer serum. J. Proteome. Res., 2006, 5, 1792-1802.
37. Geyer, H.; Geyer, R. A comprehensive review of the method for the separation and characterization of glycopeptides. It also covers the strategies for the analysis of released glycans from a glycoprotein. Biochim. Biophys. Acta., 2006, 1764, 1853-1869.
38. Zhang, H.; Aebersold, R. Isolation of glycoproteins and identification of their N-linked glycosylation sites. Methods Mol. Biol., 2006, 328, 177-185.
39. Zhang, H.; Li, X. J.; Martin, D. B.; Aebersold, R. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat. Biotechnol., 2003, 21, 660-666.
40. Sparbier. K.; Koch, S.; Kessler, I.; Wenzel, T.; Kostrzewa, M. Selective isolation of glycoproteins and glycopeptides for MALDI-TOF MS detection supported by magnetic particles. J. Biomol. Tech., 2005, 16, 407-413.
41. Alvarez-Manilla, G.; Atwood, J.; Guo, Y., Warren, N. L.; Orlando, R.; Pierce, M. Tools for glycoproteomic analysis: size exclusion chromatography facilitates identification of tryptic glycopeptides with N-linked glycosylation sites. J. Proteome. Res., 2006, 5, 701-708.
42. Hagglund, P.; Bunkenborg, J.; Elortza, F.; Jensen, O. N.; Roepstorff, P. A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. J. Proteome. Res., 2004, 3, 556-566.
43. Takahashi, K.; Hiki, Y.; Odani, H.; Shimozato, S.; Iwase, H.; Suglyama, S.; Usuda, N. Structural analyses of O-glycan sugar chains on IgAl hinge region using SELDI-TOFMS with various lectins. Biochem. Biophys. Res. Commun., 2006, 350, 580-587.
44. Takegawa, Y.; Ito, H.; Keira, T.; Deguchi, K.; Nakagawa, H.; Nishimura, S. Profiling of N- and O-glycopeptides of erythropoietin by capillary zwitterionic type of hydrophilic interaction chromatography/electrospray ionization mass spectrometry. J Sep. Sci., 2008, 31, 1585-1593.
45. Wuhrer, M.; Balog, C. I. A.; Koeleman, C. A. M.; Deelder, A. M.; Hokke, C. H. New features of site-specific horseradish peroxidase (HRP) glycosylation uncovered by nano-LC–MS with repeated ionisolation/ fragmentation cycles. Biochim. Biophys. Acta.-Gen. Subjects, 2005, 1723, 229-239.
46. Wuhrer. M.; Catalina. M.I.; Deelder, A. M.; Hokke, C. H. Glycoproteomics based on tandem mass spectrometry of glycopeptides. J. Chromatogr. B-Anal. Technol. Biomed. Life Sci., 2007, 849, 115-128.
47. Wuhrer, M.; de Boer, A. R.; Deelder, A. M. Structural glycomics using hydrophilic interaction chromatography (HILIC) with mass spectrometry. Mass Spectrom. Rev., 2009, 28, 192-206.
48. Fan, X. L.; She, Y. M.; Bagshaw, R. D.; Callahan, J. W.; Schachter, H.; Mahuran, D. J. A method for proteomic identification of membrane-bound proteins containing Asn-linked oligosaccharides. Anal. Biochem., 2004, 332, 178-186.
49. Bunkenborg, J.; Pilch, B. J.; Podtelejnikov, A.V.; Wisniewski, J. R. Screening for N-glycosylated proteins by liquid chromatography mass spectrometry. Proteomics, 2004, 4, 454-465.
50. Uematsu, R.; Furukawa, J.; Nakagawa, H.; Shinohara, Y.; Deguchi, K.; Monde, K.; Nishimura, S. I. High throughput quantitative glycomics and glycoform-focused proteomics of murine dermis and epidermis. Mol. Cell. Proteomics, 2005, 4, 1977-1989.
51. Seipert, R. R.; Dodds, E. D.; Clowers, B. H.; Beecroft, S. M.; German, J. B.; Lebrilla, C. B. Factors that influence fragmentation behavior of N-linked glycopeptide ions. Anal. Chem., 2008, 80, 3684-3692.
52. Hakansson, K.; Chalmers, M. J.; Quinn, J. P., McFarland, M. A.; Hendrickson, C. L.; Marshall, A. G. Combined electron capture and infrared multiphoton dissociation for multistage MS/MS in a Fourier transform ion cyclotron resonance mass spectrometer. Anal. Chem., 2003, 75, 3256-3262.
53. Deguchi, K.; Ito, H.; Baba, T.; Hirabayashi, A.; Nakagawa, H.; Fumoto, M.; Hinou, H.; Nishimura, S.I. Structural analysis of O-glycopeptides employing negative- and positive-ion multi-stage mass spectra obtained by collision-induced and electron-capture dissociations in linear ion trap time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom., 2007, 21, 691-698.
54. Greis, K. D.; Hayes, B. K.; Comer, F.I.; Kirk, M., Barnes, S.; Lowary, T.L.; Hart, G. W. Selective detection and site-analysis of O-GlcNAcmodified glycopeptides by beta-elimination and tandem electrospray mass spectrometry. Anal. Biochem., 1996, 234, 38-49.
55. Catalina, M. I.; Koeleman, C. A. M.; Deelder, A. M.; Wuhrer, M. Electron transfer dissociation of N-glycopeptides: loss of the entire Nglycosylated asparagine side chain. Rapid Commun. Mass Spectrom., 2007, 21, 1053-1061.
56. Hakansson, K.; Cooper, H. J.; Emmett, M. R.; Costello, C. E.; Marshall, A. G.; Nilsson, C. L. Electron capture dissociation and infrared multiphoton dissociation MS/MS of an N-glycosylated tryptic peptide to yield complementary sequence information. Anal. Chem., 2001, 73, 4530-4536.
57. Medzihradszky, K.F.; Besman, M.J.; Burlingame, A.L. Structural characterization of site-specific N-glycosylation of recombinant human factor VIII by reversed-phase highperformance liquid chromatography–electrospray ionization mass spectrometry. Anal. Chem., 1997, 69, 3986-3994.
58. Jebanathirajah, J.; Steen, H.; Roepstorff, P. Using optimized collision energies and high resolution, high accuracy fragment ion selection to improve glycopeptide detection by precursor ion scanning. J. Am. Soc. Mass. Spectrom., 2003, 14, 777-784.
59. Ritchie, M.A.; Gill, A. C.; Deery, M. J.; Lilley, K. Precursor ion scanning for detection and structural characterization of heterogeneous glycopeptide mixtures. J. Am. Soc. Mass Spectrom., 2002, 13, 1065-1077.
60. The Henry J. Kaiser Family Foundation U.S. Healthcare Costs. http://www.kaiseredu.org/topics_im.asp?imID= 1&parentID=61&id=358.
61. Hughes, B. Gearing up for follow-on biologics. Nat Rev Drug Discov., 2009, 8, 181.
62. Reichert, J. M.; Beck, A.; Iyer, H. European, Medicines Agency workshop on biosimilar monoclonal antibodies. mAbs., 2009, 1, 394- 416.
63. Questions and Answers on Biosimilar Medicines (Similar Biological Medicinal Products); London, 22 October 2008; Doc Ref EMEA/74562/2006 Rev http://www.ema.europa.eu/pdfs/human/pcwp/7456206en.pdf.
64. Procedures for Marketing Authorization Volume 2A, Chapter 1, November 2005. http://ec.europa.eu/enterprise/pharmaceuticals/eudralex/vol-2/a/vol2a_chap1_2005-11.pdf.
65. Waltz, E. Western biotechs ponder follow-on possibilities. Nat Biotechnol., 2008, 26, 962-963.
66. Healthcare Reform Draws Mixed Reviews. http://pharmtech.findpharma.com/pharmtech/articleDetail. jsp?id=662434; Patricia Van Arnum.
67. GPhA Statement on House Passage of Health Reform Bill. http://www.gpha.online.org/media/pressreleases/2010/gpha-statement-house-passage-healthreform-bill.
68. Beck, A.; Bussat, M. C.; Zorn, N.; Robillard, V.; Klinguer-Hamour, C.; Chenu, S. et al. Characterization by liquid chromatography combined with mass spectrometry of monoclonal anti-IGF-1 receptor antibodies produced in CHO and NS0 cells. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2005, 819, 203-18.
69. Chung, C. H.; Mirakhur, B.; Chan, E.; Le, Q. T.; Berlin, J.; Morse, M. et al. Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N. Engl. J. Med., 2008, 358, 1109-1117.
70. Jefferis, R. Recombinant antibody therapeutics: the impact of glycosylation on mechanisms of action. Trends Pharmacol. Sci., 2009, 30, 356-62.
71. Jefferis, R. Glycosylation as a strategy to improve antibody-based therapeutics. Nat. Rev. Drug Discov., 2009, 8, 226-34.
72. Kaneko, Y.; Nimmerjahn, F.; Ravetch, J. V. Antiinflammatory activity of immunoglobulin G resulting from Fc sialylation. Science, 2006, 313, 670-673.
73. Sheridan, C. Commercial interest grows in glycan analysis. Nat. Biotechnol., 2007, 25, 145-146.
74. Kroon, D.J.; Baldwin-Ferro, A.; Lalan, P. Identification of sites of degradation in a therapeutic monoclonal antibody by peptide mapping. Pharm. Res., 1992, 9, 1386-1393.
75. Manning, M. C.; Patel, K.; Borchardt, R. T. Borchardt RT. Stability of protein pharmaceuticals. Pharm. Res., 1989, 6 903-918.
76. Paborji, M.; Pochopin, N. L.; Coppola, W. P.; Bogardus, J. B. Chemical and physical stability of chimeric L6, a mouse-human monoclonal antibody. Pharm. Res. 1994, 11, 764-771.
77. Beck, A.; Wagner-Rousset, E.; Bussat, M. C.; Lokteff, M.; Klinguer-Hamour, C.; Haeuw, J. F. et al. Trends in glycosylation, glycoanalysis and glycoengineering of therapeutic antibodies and Fc-fusion proteins. Curr. Pharm. Biotechnol., 2008, 9, 482-501.
78. Beck, A.; Wurch, T.; Corvaia, N. Therapeutic antibodies and derivatives: from the bench to the clinic. Curr. Pharm. Biotechnol., 2008, 9, 421-422.
79. Harris, R. J.; Kabakoff, B.; Macchi, F. D.; Shen, F. J.; Kwong, M., Andya, J. D. et al. Identification of multiple sources of charge heterogeneity in a recombinant antibody. J. Chromatogr. B Biomed, Sci. Appl., 2001, 752, 233-245.
80. Vlasak, J.; Bussat, M. C.; Wang, S.; Wagner-Rousset, E.; Schaefer, M.; Klinguer-Hamour, C. et al. Identification and characterization of asparagine deamidation in the light chain CDR1 of a humanized IgG1 antibody. Anal. Biochem., 2009, 392, 145-154.
81. Kleemann, G. R.; Beierle, J.; Nichols, A. C.; Dillon, T. M. ; Pipes, G. D. ; Bondarenko, P.V. Characterization of IgG1 immunoglobulins and peptide-Fc fusion proteins by limited proteolysis in conjunction with LC-MS . Analytical Chemistry, 2008, 80, 2001-2009.
82. Hyun, J. A.; Froehlich, J. W; Lebrilla, C. B. Determination of glycosylation sites and site-specific heterogeneity in glycoproteins. Current Opinion in Chemical Biology, 2009, 13, 421–426.
83. Dilusha S. D.; Heather, D. Glycopeptide analysis by mass spectrometry. Analyst., 2008, 133, 731–738
84. Wu, S. L.; Kim, J.; Bandle, R. W.; Liotta, L.; Petricoin, E.; Karger, B. L. Dynamic Profiling of the Post-translational Modifications and Interaction Partners of Epidermal Growth Factor Receptor Signaling after Stimulation by Epidermal Growth Factor Using Extended Range Proteomic Analysis (ERPA). Mol. Cell. Proteomics, 2006, 5, 1610–1627.
85. Jiang, H.; Wu, S. L.; Karger, B. L.; Hancock, W. S. Characterization of the Glycosylation Occupancy and the Active Site in the Follow-on Protein Therapeutic: TNK-Tissue Plasminogen Activator. Biotechnol. Prog., 2009, 25, 207–218.
86. Wu, S. L.; Jiang, H.; Hancock, W. S.; Karger, B. L. Mass Spectrometric Determination of Disulfide Linkages in Recombinant Therapeutic Proteins Using Online LC-MS with Electron-Transfer Dissociation. Analytical Chemistry, 2009, 81, 112-122.
87. Wu, S. L.; Jiang, H.; Hancock, W. S.; Karger, B. L. Identification of the Unpaired Cysteine Status and Complete Mapping of the 17 Disulfides of Recombinant Tissue Plasminogen Activator Using LC−MS with Electron Transfer Dissociation/Collision Induced Dissociation. Analytical Chemistry, 2010, 82, 5296–5303.
校內:2021-01-01公開