| 研究生: |
何寬恩 Ho, Kuan-En |
|---|---|
| 論文名稱: |
使用不鏽鋼316L於定向能量沉積技術之異向熱傳導建模與熱分析 Anisotropic Heat Conduction Modeling and Thermal Analysis on Directed Energy Deposition Using 316L Stainless Steel |
| 指導教授: |
温昌達
Wen, Chang-Da |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 定向能量沉積技術 、數值模擬 、馬蘭格尼效應 、異向熱傳導 、熔池 |
| 外文關鍵詞: | Directed energy deposition (DED), Numerical simulation, Marangoni effect, Anisotropic heat conduction, Melt pool |
| 相關次數: | 點閱:115 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究之目的為探討積層製造(Additive Manufacturing, AM)之定向能量沉積技術(Directed Energy Deposition, DED),利用商用軟體ANSYS Fluent 18.0建構一個三維暫態之多層加工固態模型,選用不鏽鋼316L做為金屬基板及金屬粉末之材料,探討各項製程參數之組合、馬蘭格尼效應驅使熔池內部熔融態金屬流動對熔池外型之發展以及各層金屬薄層幾何尺寸之影響,透過建構之異向熱傳導模型考慮馬蘭格尼效應對熔池內部熔融態金屬所造成之流動,另外也會探討各項製程參數組合下對冷卻速率之影響與趨勢,並且更進一步探討加工停滯時間之長短、基板預熱與否對金屬薄層幾何尺寸與冷卻速率之影響,最後,比較異向與等效兩種熱傳導模型所模擬之金屬薄層之幾何尺寸、熔池外型發展趨勢與冷卻速率之差異。
研究結果顯示,固定雷射掃描速率時,隨著雷射功率越大,金屬薄層冷卻速率則越慢,相較雷射功率1200 W,使用雷射功率1800 W可提升16 %左右的堆疊寬度,以及提升90 %左右的堆疊高度;固定雷射功率固定時,隨著雷射掃描速率越大,金屬薄層冷卻速率則越快,而雷射掃描速率每降2 mm/s可提升4 %左右的堆疊寬度,以及提升12~16 %左右的堆疊高度。在固定製程參數下之多層加工中,金屬薄層堆疊高度會隨加工層數增加而有不斷加高之趨勢,而冷卻速率則是減少。在進階製程分析中,過長的加工停滯時間無法有效改善製程品質,建議縮短加工停滯時間以提升加工效率;基板預熱對金屬薄層幾何尺寸有明顯的增加,並可以有效改善冷卻速率過快之問題,且有助於柱狀晶的形成與減少裂紋之產生。最後,在異向與等效兩種熱傳導模型之優劣分析中,無論是金屬薄層幾何尺寸或是熔池外型發展之趨勢,異向熱傳導模型所模擬之結果更優於等效熱傳導模型所模擬之結果,且使用等效熱傳所模擬之冷卻速率可能有高估之情形。
The purpose of this research is to develop a three-dimensional model of anisotropic heat conduction for directed energy deposition (DED) process. In this research, 316L stainless steel is used as material, and the study focuses on the fluid flow of melt pool is affected by the Marangoni effect. The Marangoni effect is simulated by the anisotropic enhanced thermal conductivity coefficient. The geometric sizes and cooling rate of metal layers are investigated under various combination of laser power and laser scanning speed.
In order to promote the growth of columnar grains and reduce cracking possibility, the effect of idle time and substrate preheating are studied. Moreover, the geometric sizes, melt pool, and cooling rate of metal layers simulated by two kinds of heat conduction models, namely equivalence and anisotropy, are compared in this study.
The research results indicate that when a fixed laser scanning speed is compared, using a laser power of 1800 W instead of 1200 W can lead to an increase in stack height by around 90%. When the laser power is fixed, decreasing the laser scanning speed by 2 mm/s can increase the stack height by around 12-16 %. Moreover, the cooling rate increases when laser scanning speed increases or laser power decreases but decreases with an increase in layer number.
The results also show that idle time has no obvious effects on process. Substrate preheating can increase the geometric sizes of metal layers and significantly reduce the cooling rate. The geometric sizes, melt pool, and cooling rate of metal layers simulated by the anisotropic heat conduction model are better than those simulated by the equivalent heat conduction model. Furthermore, using the equivalent heat conduction model may lead to an overestimation of the cooling rate.
[1] Ian Gibson, I. G. (2015). Additive manufacturing technologies 3D printing, rapid prototyping, and direct digital manufacturing.
[2] Standard, A. S. T. M. (2012). Standard terminology for additive manufacturing technologies. ASTM International F2792-12a, 1-9.
[3] Yan, Z., Liu, W., Tang, Z., Liu, X., Zhang, N., Li, M., & Zhang, H. (2018). Review on thermal analysis in laser-based additive manufacturing. Optics & Laser Technology, 106, 427-441.
[4] Machine Tool & Accessory Magazine. (2020, May). 120, 71. Available: http://www.maonline.com.tw/upload/Book/F_202005131337mCuxa170.PDF
[5] Michaleris, P. (2014). Modeling metal deposition in heat transfer analyses of additive manufacturing processes. Finite Elements in Analysis and Design, 86, 51-60.
[6] Peyre, P., Aubry, P., Fabbro, R., Neveu, R., & Longuet, A. (2008). Analytical and numerical modelling of the direct metal deposition laser process. Journal of Physics D: Applied Physics, 41(2), 025403.
[7] Manvatkar, V., De, A., & DebRoy, T. (2014). Heat transfer and material flow during laser assisted multi-layer additive manufacturing. Journal of Applied Physics, 116(12).
[8] Huang, H. W., & Wen, C. D. (2018). Numerical Modeling on Multi-layer Scanning of Directed Energy Deposition Using Stainless Steel 316L and Thermal Analysis for the Effects and Optimization of Process Parameters. Unpublished master 's thesis, National Cheng Kung University, Tainan.
[9] Gan, Z., Yu, G., He, X., & Li, S. (2017). Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of Co-base alloy on steel. International Journal of Heat and Mass Transfer, 104, 28-38.
[10] Zhang, K., Wang, S., Liu, W., & Shang, X. (2014). Characterization of stainless steel parts by laser metal deposition shaping. Materials & Design, 55, 104-119.
[11] Le, T. N., & Lo, Y. L. (2019). Effects of sulfur concentration and Marangoni convection on melt-pool formation in transition mode of selective laser melting process. Materials & Design, 179, 107866.
[12] Siao, Y. H., & Wen, C. D. (2021). Examination of molten pool with Marangoni flow and evaporation effect by simulation and experiment in selective laser melting. International Communications in Heat and Mass Transfer, 125, 105325.
[13] Siao, Y. H., & Wen, C. D. (2021). Thermal analysis of process parameters on molten pool by simulation and experiment during selective laser melting of SS316L. Unpublished doctoral dissertation, National Cheng Kung University, Tainan.
[14] Chu, C. H., & Wen, C. D. (2017). Numerical Modeling on Directed Energy Deposition for Stainless Steel 316L and Thermal Analysis of the Effects of Process Parameter. Unpublished master 's thesis, National Cheng Kung University, Tainan.
[15] Klein, R. (2011). Material properties of plastics. Laser welding of plastics.
[16] Stimulated Emission. Available:https://commons.wikimedia.org/wiki/File:Stimulated_Emission.svg
[17] 楊隆昌. (2014). 雷射發展的趨勢與應用. 中工高雄會刊,22(1),23-33
[18] Gaussian Beam Optics. Available: http://www.cvimellesgriot.com/.1919–1928, August 1997
[19] Griot, C. M. (2009). Gaussian beam optics. Gaussian Beam Opt, 2(1).
[20] SAE steel grades. Available: https://assets.website-files.com/60941e9e3ce588528a28cf21/61fc14bb88a7a1f60f3b6a69_SAE%20steel%20grades.pdf
[21] SAE steel grades. Available: https://en.wikipedia.org/wiki/SAE_steel_grades
[22] 許正勳. (2014). 淺談不鏽鋼之種類、磁特性及應用. Available:https://www.fda.gov.tw/upload/133/2014071412042658140.pdf
[23] Hao, M., & Sun, Y. (2013). A FEM model for simulating temperature field in coaxial laser cladding of TI6AL4V alloy using an inverse modeling approach. International Journal of Heat and Mass Transfer, 64, 352-360.
[24] Hu, D., & Kovacevic, R. (2003). Modelling and measuring the thermal behaviour of the molten pool in closed-loop controlled laser-based additive manufacturing. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 217(4), 441-452.
[25] Yang, L. X., Peng, X. F., & Wang, B. X. (2001). Numerical modeling and experimental investigation on the characteristics of molten pool during laser processing. International journal of heat and mass transfer, 44(23), 4465-4473.
[26] Toyserkani, E., Khajepour, A., & Corbin, S. (2004). 3-D finite element modeling of laser cladding by powder injection: effects of laser pulse shaping on the process. Optics and lasers in engineering, 41(6), 849-867.
[27] Zhang, Z., Farahmand, P., & Kovacevic, R. (2016). Laser cladding of 420 stainless steel with molybdenum on mild steel A36 by a high power direct diode laser. Materials & Design, 109, 686-699.
[28] Mills, K. C. (2002). Recommended values of thermophysical properties for selected commercial alloys. Woodhead Publishing.
[29] Chikarakara, E., Naher, S., & Brabazon, D. (2011). Analysis of microstructural changes during pulsed CO2 laser surface processing of AISI 316L stainless steel. Advanced Materials Research, 264, 1401-1408.
[30] Trapp, J., Rubenchik, A. M., Guss, G., & Matthews, M. J. (2017). In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing. Applied Materials Today, 9, 341-349.
[31] Siao, Y. H., & Wen, C. D. (2021). Thermal analysis of anisotropic heat conduction model with experimental validation on molten pool during selective laser melting. Materials Today Communications, 27, 102425.
[32] Cengel, Y. A., & Ghajar, A. (2011). Heat and mass transfer (a practical approach, SI version). McGraw-670 Hill Education, 671(52), 964.
[33] Lemmon, E. W., & Jacobsen, R. T. (2004). Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air. International journal of thermophysics, 25, 21-69.
校內:2028-07-25公開