| 研究生: |
楊人豪 Yang, Ren-Hao |
|---|---|
| 論文名稱: |
氧化鎂鎳薄膜對於電阻式記憶體與氣體感測器元件製作與研究 Fabrication and Investigation of MgxNi1-xO Insulator for non-volatile RRAM and Gas Sensor |
| 指導教授: |
張守進
Chang, Shoou-Jinn |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 142 |
| 中文關鍵詞: | 氧化鎂鎳 、非揮發性記憶體 、電阻式隨機存取記憶體 、氣體感測器 |
| 外文關鍵詞: | MgNiO, Nonvolatiole memory (NVM), Resistance Random Access Memory (RRAM), Gas Sensor |
| 相關次數: | 點閱:52 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文在研究氧化鎂鎳材料,並且將其用來作為電阻式隨機存取記憶體的氧化層以及氣體感測器的感測層。
首先我們介紹氧化鎂鎳材料的製程並配合穿透式電子顯微鏡(TEM)分析元件結構以及薄膜的繞射狀況,並藉由原子力顯微鏡(AFM)分析薄膜表面粗糙度,最後藉著X射線光電子能譜(XPS)分析薄膜內的氧空缺數量,得知氧空缺隨著元素摻雜變化的狀況。
對於RRAM的研究,我們以不同元素比例以及不同氬氧比例濺鍍氧化鎂鎳薄膜作為電阻轉換層,並且探討使用金屬上電極Ag、Ni、Ti之下,氧化鎂鎳記憶體的製備以及電特性。對於銀上電極而言,量測結果顯示元件有著雙極性的特性,由於銀有著高自由能,RRAM元件有著極低的Set與Reset電壓,並且操作次數能夠達到1500次以上,其中使用氧空缺較多的薄膜會有著較佳的特性,能夠使on/off ratio明顯上升。而使用Ni作為上電極之後,元件開關次數較低,使用氧空缺較少的薄膜特性最好,但也僅能操作400多次,不過比起其他金屬上電極有著最大的on/off ratio。而對於Ti上電極的元件有著2000多次的操作次數,並且由於純粹藉由氧空缺燈絲傳導,在氧空缺較低時會更容易斷裂並且造成更大的on/off ratio。在量測完之後我們試著對量測結果進行分析並建立導電燈絲模型,接著嘗試對元件進行改善。
隨後我們試著改善元件,首先先降低元件的限電流,在限電流較低的情況下燈絲也會較細,在Ni與Ti上電極的元件中呈現較佳的特性。最後我們將RRAM的電阻轉換層進行堆疊,上下層使用不同參數的氧化鎂鎳薄膜製作出雙層RRAM,能夠幫助導電燈絲形成,上電極選用Ni與Ti,經過量測發現雙層結構使得元件的開關次數更進一步的上升,達到了2500~3000次的開關次數。
另一部分,我們氧化鎂鎳薄膜製作氣體感測器,與常見的氧化鎳氣體感測器比較起來隨著鎂比例的提升我們確實改善了感測器對於NO2氣體的響應度,使用Mg0.5Ni0.5O薄膜有著最佳的響應度並有不錯的選擇性,這是由於氧空缺的提升以及薄膜電阻的變化,使的響應度因此而提升,而在Mg比例繼續上升後由於鎂的比例過高而對於NO2反而沒有了響應,並且我們將Mg0.5Ni0.5O薄膜實作在MEMS結構上,不過穩定性還不足因此放在future work中。
We studied the MgxNi1-xO material in this paper and used it as the oxide layer of resistive random-access memory and the sensing layer of gas sensors.
First, we introduce the manufacturing process of the MgxNi1-xO material. We analyzed the structure of the device and the diffraction condition of the film with a transmission electron microscope (TEM). Second, analyze the surface roughness of the film by atomic force microscope (AFM). Finally, we analyzed the amount of oxygen vacancies in the film by X-ray photoelectron spectroscopy (XPS) and obtained the status of oxygen vacancies changing with element doping.
For RRAM research, we sputtered MgxNi1-xO thin films with different element ratios and different oxygen flow ratios as the resistance conversion layer. And then we discussed the electrical characteristics of RRAM using metal upper electrodes Ag, Ni, Ti. For the Ag upper electrode, the measurement result shows that the device has bipolar characteristics. Because of the high free energy of silver, the RRAM device has extremely low Set and Reset voltages, and the number of operations can reach more than 1500 times. Among them, the RRAM with more oxygen vacancies in the film will have better characteristics and can significantly increase the on/off ratio. Subsequently, using Ni as the upper electrode, the number of elements switching times is lower than Ag upper electrode RRAM. Among them, the RRAM film of fewer oxygen vacancies has the best feature. Although it can only be operated for 400 times, it has the largest on/off ratio compared to other metal upper electrodes. For the Ti upper electrode element, there are more than 2,000 switching cycle times. And since it is conducted purely by the oxygen vacancy filament, when the oxygen vacancy is low, the filament will be easier to break and cause a greater on/off ratio. After the measurement, we tried to analyze the measurement results and build a conductive filament model, and then tried to improve the components.
Then we tried to improve the components. First, we lowered the compliance current of the components. In the case of lower compliance current, the filament will be thinner, showing better characteristics in the RRAM with Ni and Ti upper electrodes. Finally, we stack the resistance conversion layers of the RRAM, the upper and lower layers use MgxNi1-xO films with different parameters to make a bilayer RRAM, which can help the formation of the conductive filament, and the top electrode of the bilayer RRAM selects Ni and Ti. After measurement, it is found that the bilayer structure further increases the switching times of the component, reaching 2500~3000 switching times.
In the other part, we made gas sensors with MgxNi1-xO thin film. Compared with common NiO gas sensors, with the increase of Mg ratio, we have indeed improved the sensor's response to NO2 gas. The use of Mg0.5Ni0.5O film has the best response and good selectivity. This is due to the increase in oxygen vacancy and the change in film resistance, which improves the responsivity. After the Mg ratio continues to rise, too much Mg ratio makes the sensor no longer respond to NO2. And we made the Mg0.5Ni0.5O film with the MEMS structure, but the stability is not enough, so it is placed in the future work.
Shin, YunSeung. "Non-volatile memory technologies for beyond 2010."Digest of Technical Papers. 2005 Symposium on VLSI Circuits, 2005.IEEE, 2005.
Wong, H-S. Philip, et al. "Phase change memory."Proceedings of the IEEE98.12 (2010): 2201-2227.
Burr, Geoffrey W., et al. "Phase change memory technology."Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena28.2 (2010): 223-262.
Han, Su‐Ting, Ye Zhou, and V. A. L. Roy. "Towards the development of flexible non‐volatile memories."Advanced Materials25.38 (2013): 5425-5449.
Bing Li, Bonan Yan, Bonan Yan, “An Overview of In-memory Processing with EmergingNon-volatile Memory for Data-intensive Applications”
Burr, Geoffrey W., et al. "Overview of candidate device technologies for storage-class memory."IBM Journal of Research and Development52.4.5 (2008): 449-464.
S. A. Wolf et al., Science294, 1488 (2001).
Scheuerlein, Roy Edwin. "Read circuit for magnetic memory array using magnetic tunnel junction devices." U.S. Patent No. 5,793,697. 11 Aug. 1998
Meena, Jagan Singh, et al. "Overview of emerging nonvolatile memory technologies."Nanoscale research letters9.1 (2014): 526.
Yang, Yuchao, Patrick Sheridan, and Wei Lu. "Complementary resistive switching in tantalum oxide-based resistive memory devices."Applied Physics Letters100.20 (2012): 203112.
Choi, B. J., et al. "Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition."Journal of applied physics98.3 (2005): 033715.
Kim, Hee-Dong, et al. "Transparent resistive switching memory using ITO/AlN/ITO capacitors."IEEE electron device letters32.8 (2011): 1125-1127.
S. Yu, “Overview of Resistive Switching Memory (RRAM) Switching Mechanism and Device Modeling,” IEEE International Symposium on Circuits and Systems (ISCAS), 2014.
Akinaga, Hiroyuki, and Hisashi Shima. "Resistive random-access memory (ReRAM) based on metal oxides."Proceedings of the IEEE98.12 (2010): 2237-2251.
Pan, Feng, et al. "Recent progress in resistive random-access memories: materials, switching mechanisms, and performance."Materials Science and Engineering: R: Reports83 (2014): 1-59.
Ilia Valov, “Redox-Based Resistive Switching Memories (ReRAMs): Electrochemical Systems at the Atomic Scale,” Chemelectrochem, 1(1), pp. 26-36, Jan 3, 2014.
Chen, Jui-Yuan, et al. "Dynamic evolution of conducting nanofilament in resistive switching memories."Nano letters13.8 (2013): 3671-3677.
Russo, Ugo, et al. "Filament conduction and reset mechanism in NiO-based resistive-switching memory (RRAM) devices."IEEE Transactions on Electron Devices56.2 (2009): 186-192.
Russo, Ugo, et al. "Self-accelerated thermal dissolution model for reset programming inunipolar resistive-switching memory (RRAM) devices. "IEEE Transactions on Electron Devices56.2 (2009): 193-200.
Chiu, Fu‐Chien, Somnath Mondal, and Tung‐Ming Pan. "Structural and Electrical Characteristics of Alternative High‐k Dielectrics for CMOS Applications." High‐k Gate Dielectrics for CMOS Technology (2012): 111-184.
Lim, Ee, and Razali Ismail. "Conduction mechanism of valence change resistive switching memory: a survey." Electronics 4.3 (2015): 586-613.
Yu, Shimeng, Ximeng Guan, and H-S. Philip Wong. "Conduction mechanism of TiN/HfOx/Pt resistive switching memory: A trap-assisted-tunneling model." Applied Physics Letters 99.6 (2011): 063507.
Emtage, P. R., and W. Tantraporn. "Schottkyemission through thin insulating films."Physical Review Letters8.7 (1962): 267.
Liu, Xiaoyan, Jinfeng Kang, and Ruqi Han. "Direct tunneling current model for MOS devices with ultra-thin gate oxide including quantization effect and polysilicon depletion effect."Solid State Communications125.3-4 (2003): 219-223.
Ikuno, Takashi, et al. "Electron transport properties of Si nanosheets: Transition from direct tunneling to Fowler-Nordheim tunneling."Applied Physics Letters99.2 (2011): 023107.
Kamiya, Katsumasa, et al. "ON-OFF switching mechanism of resistive–random–access–memories based on the formation and disruption of oxygen vacancy conducting channels."Applied Physics Letters100.7 (2012): 073502.
Sze, S.M.; Ng, K.K. Physics of Semiconductor Devices, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007.
Lau, W. S. "An extended unified Schottky-Poole-Frenkel theory to explain the current-voltage characteristics of thin film metal-insulator-metal capacitors with examples for various high-k dielectric materials." ECS Journal of Solid-State Science and Technology 1.6 (2012): N139-N148.
Simanjuntak, Firman Mangasa, et al. "Status and prospects of ZnO-based resistive switching memory devices."Nanoscale research letters11.1 (2016): 368.
Wei-Kang Hsieh, “Investigation of Oxide-Based Materials Applied to Nonvolatile Memory Devices,” Ph. D. dissertation, NCKU, pp. 1-3, June 2016.
Mott, Nevill Francis, and Edward A. Davis.Electronic processes in non-crystalline materials. Oxford university press, 2012.
Mott, Nevill Francis, and Edward A. Davis. Electronic processes in non-crystalline materials. OUP Oxford, 2012.
Yu, Shimeng, Byoungil Lee, and H-S. Philip Wong. "Metal oxide resistive switching memory." Functional Metal Oxide Nanostructures. Springer, New York, NY, 2012. 303-335.
Gehring, Andreas, and Siegfried Selberherr. "Modeling of tunneling current and gate dielectric reliability for nonvolatile memory devices."IEEE Transactions on Device and Materials Reliability4.3 (2004): 306-319.
Shinoki, F., and A. Itoh. "Mechanism of RF reactive sputtering."Journal of Applied Physics46.8 (1975): 3381-3384.
Donald A., “Semiconductor Physics and Devices: Basic Principles” Neamen 3/e. N ew Y ork: McGraw-Hill, 2003.
Monroy, E., et al. “AlxGa1-xN: Si Schottky barrier photodiodes with fast response and high detectivity.” Applied physics letters 73.15 (1998): 2146-2148.
Vossen, John L., Werner Kern, and Walter Kern, eds. “Thin film processes II. Vol. 2.” Gulf Professional Publishing, 1991.
Li-Yang Chang, “Investigation of Indium Gallium Oxide Thin Film Fabricated by RF Sputtering System and Their Applications” MasterD. thesis, NCKU, Jun. 2017.
Kantor, Innokenty, et al. "A laser heating facility for energy-dispersive X-ray absorption spectroscopy."Review of Scientific Instruments89.1 (2018): 013111.
Wei-Ting Wu, “Investigation of Indium Titanium Zinc Oxide Thin Film Transistors Fabricated by RF Sputtering System and Their Optoelectronic Application,” Master D. thesis, NCKU, pp.13-22,Jan. 2017
Turner, Noel H., Brett I. Dunlap, and Richard J. Colton. "Surface analysis: x-ray photoelectron spectroscopy, Auger electron spectroscopy and secondary ion mass spectrometry."Analytical Chemistry56.5 (1984): 373-416.
Williams, David B., and C. Barry Carter. "The transmission electron microscope."Transmission electron microscopy. Springer, Boston, MA, 1996. 3-17.
He, G., et al. "Effect of postdeposition annealing on the thermal stability and structural characteristics of sputtered HfO2films on Si (1 0 0)."Surface Science576.1-3 (2005): 67-75.
C. SUM, S.M.LU, F.JIN, et al. "The Resistive Switching Characteristics of TiN/HfO2/Ag RRAMDevices with Bidirectional Current Compliance. "Journal of ELECTRONIC MATERIALS, Vol. 48, No. 5, 2
P.B. Weise, “Effect of electronic charge transfer between adsorbate and solid on chemisorption and catlysis,” J. Chem. Phys., vol2, pp.1531-1538, 1953
薛永浚,“不同升溫條件對真空蒸鍍熱氧化法製備氧化鎵薄膜型態及感測特性之研究”,國立成功大學碩士論文, 2006.
Hongshan Bi, Yanbai Shen, Sikai Zhao, et al, “Synthesis of NiO-In2O3 heterojunction nanospheres for highly selective and sensitive detection of ppb-level NO2”, Vacuum 172 (2020) 109086
Yuan, Fang, et al. "A combined modulation of set current with reset voltage to achieve 2-bit/cell performance for filament-based RRAM."IEEE Journal of the Electron Devices Society2.6 (2014): 154-157.
Park, Jubong, et al. "Multibit Operation of TiOx-Based ReRAM by Schottky Barrier Height Engineering."IEEE Electron Device Letters32.4 (2011): 476-478.
Cheng, Chun-Hu, Albert Chin, and F. S. Yeh. "Ultralow Switching Energy Ni/GeOx/HfON/TaN RRAM."IEEE electron device letters 32.3 (2011): 366-368.
Wang, Yan, et al. "Investigation of resistive switching in Cu-doped HfO2thin film for multilevel non-volatile memory applications."Nanotechnology21.4 (2009): 045202.
Jung, Seungjae, et al. "Resistive switching characteristic of solution-processed TiOxfor next-generation non-volatile memory application; transparency, flexibility, and nano-scale memory feasibility." Microelectronic engineering88.7 (2011): 1143-1147.
Kim, Sungho, et al. "Highly durable and flexible memory based on resistance switching."Solid-State Electronics54.4 (2010): 392-396.
Kim, Myeongcheol, and Kyung Cheol Choi. "Transparent and flexible resistive random-access memory based on Al2O3film with multilayer electrodes."IEEE Transactions on Electron Devices64.8 (2017): 3508-3510.
Shang, Jie, et al. "Thermally stable transparent resistive random-access memory based on all‐oxide heterostructures."Advanced Functional Materials24.15 (2014): 2171-2179.
Jeong, Doo Seok, et al. "Memristors for energy‐efficient new computing paradigms."Advanced Electronic Materials2.9 (2016): 1600090.
Wang, Zhuo-Rui, et al. "Functionally complete Boolean logic in 1T1R resistive random-access memory."IEEE Electron Device Letters38.2 (2016): 179-182.
Balatti, Simone, Stefano Ambrogio, and Daniele Ielmini. "Normally-off logic based on resistive switches—Part II: Logic circuits."IEEE Transactions on Electron Devices62.6 (2015): 1839-1847.