研究生: |
李景弘 Li, Jing-Hong |
---|---|
論文名稱: |
藉由透明氧化物層對GaN基LED光取出改善之研究 Investigation on the light extraction improvement of GaN-based LED by transparent conductive oxide layer |
指導教授: |
洪茂峰
Houng, Mau-Phon |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 72 |
中文關鍵詞: | 發光二極體 、氧化銦錫 、表面黏著 、氧化鋅鋁 |
外文關鍵詞: | SMD, Light emitting diodes (LEDs), ITO, AZO |
相關次數: | 點閱:69 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了要增加光輸出功率,我們使用三種不同電流擴散層,薄的雙層金屬鎳金、氧化鋅鋁和銦錫氧化物, Sputter成長ITO和AZO以及E-GUN成長ITO,最低電阻率都能達到2×10-4Ω-cm。將這四種薄膜分別鍍在玻璃上,再以U-4100 Spectrophotometer來量測穿透率;鎳金、氧化鋅鋁和銦錫氧化物的穿透率在波長456nm分別為53%、74%、68.7%(Sputter)和90.2%(E-Gun)。因此選擇E-Gun所成長的銦錫氧化物來做為元件的電流擴散層,由於銦錫氧化物對於P-GaN無法形成良好的歐姆接觸,於是選用高功函數的鎳金屬來形成歐姆接觸,利用傳輸線模型(TLM)分析,我們可以找出Ni/Au和Ni/ITO在P-GaN歐姆接觸的最佳製程參數。
我們將藍光晶粒以SMD(表面黏著)的方式進行封裝,晶粒放置於鍍銀的基座上,杯面為120゚夾角,使用折射係數為1.5的矽膠封裝,導致低的臨界角損失和Fresnel損失。
In order to increase output power, we used three differentt kinds of current spreading layer ,thin bilayer metal Ni/Au, AZO and ITO. ITO and AZO were deposied by sputter and ITO was growed by E-Gun, their lowest resistance could all reach about 2×10-4Ω-cm2. We deposited the four thin films on glass and measure the transmittance by U-4100 Spectrophotometer. The transmittance of Ni/Au, AZO and ITO at wavelength 456nm are about 53%、74% 、68.7% (Sputter) and 90.2% (E-Gun). So we choose ITO deposited by E-Gun as our device's current spreading layer. Owing to ITO can't form good ohmic contact on P-GaN, we use high work function metal nickel to form ohmic contact. Taking advantage of transmission-line-model to analyze, we could find the best process parameter of ohmic contact on P typed GaN for Ni/Au and ITO.
We took the LED die to be packaged by SMD mode. Dies were attached on substrate electroplated silver. And the cup face’s angle is 120゚. We used organic silicon resin whose refractive index is 1.5 to encapsulate results in low critical angle loss and Fresnel loss.
[1] H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies”, J. Appl. Phys., Vol. 76, pp. 1363, 1994.
[2] S. C. Binari, K. Doverspike, G. Kelner, H. B. Dietrich, and A. E. Wikenden, “GaN FETs for microwave and high-temperature applications”, Solid-State Electron., Vol. 41, pp.177-180, 1997.
[3] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T.
Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano,and K. Chocho, “Continuous-wave operation of InGaN/GaN/AlGaN-based laser diodes gro-w on GaN substrates”, Appl. Phys. Lett., Vol. 72, pp. 2014-2106, 1998.
[4] M. Razeghi, and A. Rogalski, “Semiconductor ultraviolet detectors”, J. Appl. Phys., Vol. 79, pp. 7433, 1996.
[5] S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, “GaN: Processing, defects, and devices”, J. Appl. Phys., Vol. 86, pp. 1, 1999.
[6] K. M. Uang, S. J. Wang, S. L. Chen, C. K. Wu, S. C. Chang, T. M. Chen and B. Wen, “High-Power GaN-Based Light-Emitting Diodes with Transparent Indium Zinc Oxide Films ”, J.Appl. Phys., Vol. 44, No. 4B, pp. 2516-2519, 2005.
[7] S. P. Jung, C. H. Lin, H. M. Chan, Z. Y. Fan, J. G. Lu, and H. P. Lee,“ High transparency low resistance oxidized Ni/Au-ZnO contacts to p-GaN for high performance LED applications”, phys. stat. sol. pp. 2827-2830, 2004
[8] K. M. Chang, J. Y. Chu, and C. C. Cheng ,“Highly Reliable GaN-Based Light-Emitting Diodes Formed by p–In0.1Ga0.9N–ITO Structure”, IEEE Photonics Technol. Lett., Vol. 16, No. 8, pp. 1807-1809, 2004.
[9] C. Agashe, O. Kluth, J. Hu¨pkes, U. Zastrow, and B. Rech, M. Wuttig, “Efforts to improve carrier mobility in radio frequency sputtered aluminum doped zinc oxide films”, J. Appl. Phys., Vol. 95, pp. 1911-1917, 2004.
[10] K. Tamura, K. Nakahara, M. Sakai1, D. Nakagawa, N. Ito, M. Sonobe, H. Takasu, H. Tampo, P. Fons, K. Matsubara, K. Iwata, A. Yamada, and S. Niki, “Ingan-based light-emitting diodes fabricated with transparent Ga-doped ZnO as ohmic p-contact”, phys. stat. sol. Vol. 201, pp. 2704–2707, 2004.
[11] J. Song, D. S. Leem, J. S. Kwak, O. H. Nam, Y. Park, and T. Y. Seong, “Low resistance and reflective Mg-doped indium oxide-Ag ohmic contacts for flip-chip light-emitting diodes”, IEEE Photonics Technol. Lett., Vol. 16, No. 6, pp. 1450-1452, 2004.
[12], P. Bhattacharya, “Semiconductor Optoelectronic Devices.” 2nd, Prentice Hall
[13] Nakamura, S. Pearton, D. Fasol, G. “The Blue Laser Diode: the complete story”, 2nd, Springer Press.
[14] R. Singh, D. Doppalapudi, and T. D. Moustakas, L. T. Romano, “ Phase separation in InGaN thick films and formation of InGaN/GaN double heterostructures in the entire alloy composition”, Appl. Phys. Lett., Vol. 70, No. 9, pp. 1089, 1997.
[15] H. K. Kim, S. H. Han, and T. Y. Seong, “Low-resistance Ti/Au ohmic contacts to Al-doped ZnO layers”, Appl. Phys. Lett. Vol. 77, pp. 1647-1649, 2000.
[16] Li-Chien Chena, Jin-Kuo Ho, Charng-Shyang Jong, Chien C. Chiu, and Kwang-Kuo Shih Fu-Rong Chen and Ji-Jung Kai, “Oxidized Ni/Pt and Ni/Au ohmic contacts to p-type GaN”, Appl. Phys. Lett., vol. 76, pp. 3703 , 2000.
[17] J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, K. K. Shih, L. C. Chen, F. R. Chen, and J. J. Kai, “Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films”, J. Appl. Phys. Vol. 86, No 8, pp. 4491-4497, 1999.
[18] J. K. Sheu, Y. K. Su, G. C. Chi, B. J. Pone, C. Y. Chen, C. N. Haung, W. C. Chen, “Photoluminescence spectroscopy of Mg-doped GaN ”, J. Appl. Phys. Vol 84 No 8, pp. 4590-4594, 1998.
[19] 李玉華, “透明導電膜及其應用”, 科儀新知,第十二卷第一期. pp. 94-101, 1990.
[20] 楊明輝,“金屬氧化物透明導電材料的基本原理”, 工業材料雜誌179期. pp. 134-144, 2001.
[21] 楊明輝, “透明導電膜”, 藝軒圖書出版社, 2006
[22]D. A. Neamen, “Semiconductor Physics and Devices: Basic Principles”, 3nd edition, McGraw Hill, 2003 .
[23] D. K. Schroder, “Semiconductor Material And Device Characterization”, John Wiley & Sons, 1998.
[24] 許義忠,“氮化鎵材料的蝕刻以及金屬接觸之研究”, 成功大學光電工程與科學研究所碩士論文, 2004.
[25] S. Wolf, “Silicon Processing for the VLSI Era”, Vol. 1 Ch.15, lattice Press.
[26] Sorab k. Ghandhi, “VLSI Fabrication Principles”, John Wiley & Sons, pp. 589, 1994.
[27] C. Youtsey, I. Adesida, “Smooth n-type GaN surfaces by photoenhanced wet etching”, Appl. Phys. Lett., Vol. 72, pp. 560-562, 1998.
[28] C. Y. Chang , S. M. Sze, “ULSI Technology”, McGraw Hill, 1996.
[29] M. R. Stephen, J. C. Jerome, D. W. William, “Handbook of Plasma Processing Technology”, Noyes Publications, 1990.
[30] Z. Z. Chen, Z. X. Qin, Y. Z. Tong, X. M. Ding, X. D. Hu, T. J. Yu, Z. J. Yang, G. Y. Zhang, “Etching damage and its recovery in n-GaN by reactive ion etching”, Physica B: Condensed Matter, Vol. 334, pp. 188-192, 2003.
[31] D. Basak, T. Nakanishi, S. Sakai, “Reactive ion etching of GaN using BCl3, BCl3/Ar and BCl3/ N2 gas plasmas”, Solid-State Electronics, Vol. 44, pp. 725-728, 2000.
[32]莊達人,“VLSI製造技術”, 高立圖書, 2003.
[33]李建宜, “以溼式蝕刻研製微機電微波濾波器”, 成功大學電機工程學系微電子所碩士論文, 2005.
[34]Hiroshi Amano, Masahiro Kito, Kazumasa Hiramatsu and Isamu Akasaki, “P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI)”, Jpn. J. Appl. Phys Part 2-Letters, Vol. 28, pp. L2112-L2114, 1989.
[35]S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, “Hole Compensation Mechanism of P-Type GaN Films”, Jpn. J. Appl. Phys. Vol. 31, pp. 1258-1266, 1992.