| 研究生: |
林盟翔 Lin, Meng-Shiang |
|---|---|
| 論文名稱: |
光流體元件操控光聚焦於二維平面上之探討 Studies in Controlling of Light Focusing on a Two-Dimensional Plane by Optofluidic Device |
| 指導教授: |
楊瑞珍
Yang, Ruey-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 光流體 、液態微透鏡 、雙凸透鏡 、微稜鏡 |
| 外文關鍵詞: | optofluidic, tunable lens, biconvex, microprism |
| 相關次數: | 點閱:130 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究描述一組利用微機電製成技術製作於矽晶圓上的微結構,並利用PDMS的翻模技術將此微結構製作成光流體晶片。藉著調控微流體的技術,在晶片上分別產生可調變液態透鏡與可調變液態稜鏡,並利用單模光纖耦合光源作一個二維調變的聚焦於同一平面上,配合模擬軟體探討其聚焦準確性以及可調變的範圍。
晶片上整合了孔徑、可調變液態透鏡、可調變液態稜鏡與樣品槽。孔徑是利用微管道注入墨水來達到一個有效的擋光元件,透過孔徑使得剩下的光源可以準直的入射至透鏡。可調變液態透鏡是藉由核心層與包覆層流體的流速比來調變出不同曲率的雙凸透鏡,以達到聚焦位置的改變(x軸)。可調變液態稜鏡是注入兩種不同折射係數的溶液來達到不同的偏折角(y軸),其中稜鏡腔體的頂角的設計有60∘與90∘來做為實驗的比較。另外,樣品槽中注入螢光粒子(Rhodamine B),配合綠光雷射(λ=535nm)激發來觀察光路徑的偏折與聚焦。實驗結果顯示,聚焦的位置因為液態透鏡曲面並非一個理想的透鏡曲面造成較大的誤差,而稜鏡的部分則可以依照溶液的折射係數不同,使光路徑最大的偏折角可從-6.28∘至22.3∘。
此調變技術可運用於檢測晶片上局部的螢光激發或光學偵測,晶片不僅微小化且整合了不同功能的光學元件,相較於傳統光學元件,可調變、製作簡單以及價格便宜更是一大優勢。
Recently, optical methods have been widely used for biological and chemical detection in microfluidic or lab-on-a-chip systems. Precise adjustment of the optical path among multiple integrated components, such as flow cytometers, optical tweezers, and molecule detectors, is important. However, traditional optical elements have a fixed refractive index and geometrical shape, and cannot change continuously with variation of the focal length and deviation angle. This study investigated the simulation and experimental results of the change in the light path by integration with a tunable lens and a tunable prism.
The components of the optofluidic chip are the light source, aperture, lens, prism, and sample chamber. To act as a point light source, the light source, which utilizes laser light, was coupled into a single mode optical fiber that was inserted into a prefabricated microchannel. The aperture was formed by two channels filled after fabrication with black ink. The tunable lens was formed in an expanded chamber with three streams of fluids. A higher refractive index stream was sandwiched between two streams having a lower refractive index. This tunable lens changed the curvature in a biconvex manner using the flow rate ratio of the core and cladding. In addition, the use of different flow rate ratios resulted in the formation of a different apex angle of the prism. The light path changed with the different refractive indices of the liquids and the apex angles. By using different apex angles, the optimum deviation angle ranged from −6° to 22°.
The sample chamber was filled with a solution of a fluorescent dye in order to make the optical path visible. Using this optofluidic chip, the optical path can be adjusted for optical detection and excitation of the local fluorescence dye.
[1] Ho CM, Tai YC. Micro-electro-mechanical-systems (MEMS) and fluid flows. Annual Review of Fluid Mechanics. 30;579-612;1998.
[2] Whitesides GM. The origins and the future of microfluidics. Nature. 442;368-373;2006.
[3] Squires TM, Quake SR. Microfluidics: Fluid physics at the nanoliter scale. Reviews of Modern Physics. 77;977-1026;2005.
[4] Weibel DB, Whitesides GM. Applications of microfluidics in chemical biology. Current Opinion in Chemical Biology. 10;584-591;2006.
[5] Manz A, Graber N, Widmer HM. Miniaturized total chemical - analysis systems - A novel concept for chemical sensing. Sensors and Actuators B-Chemical. 1;244-248;1990.
[6] Manz A, Harrison DJ, Verpoorte EMJ, Fettinger JC, Paulus A, Ludi H, et al. Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: Capillary electrophoresis on a chip. Journal of Chromatography. 593;253-258;1992.
[7] Levy U, Shamai R. Tunable optofluidic devices. Microfluidics and Nanofluidics. 4;97-105;2007.
[8] Nguyen NT. Micro-optofluidic Lenses: A review. Biomicrofluidics. 4;031501;2010.
[9] Camou S, Fujita H, Fujii T. PDMS 2D optical lens integrated with microfluidic channels: principle and characterization. Lab on a Chip. 3;40-45;2003.
[10] Mao XL, Lin SCS, Lapsley MI, Shi JJ, Juluri BK, Huang TJ. Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom. Lab on a Chip. 9;2050-2058;2009.
[11] Neuman KC, Block SM. Optical trapping. Review of Scientific Instruments. 75;2787-2809;2004.
[12] Chiou PY, Ohta AT, Wu MC. Massively parallel manipulation of single cells and microparticles using optical images. Nature. 436;370-372;2005.
[13] Agarwal M, Gunasekaran RA, Coane P, Varahramyan K. Polymer-based variable focal length microlens system. Journal of Micromechanics and Microengineering. 14;1665-1673;2004.
[14] Shi J, Stratton Z, Lin S-CS, Huang H, Huang TJ. Tunable optofluidic microlens through active pressure control of an air–liquid interface. Microfluidics and Nanofluidics. 9;313-318;2009.
[15] Lee SW, Lee SS. Focal tunable liquid lens integrated with an electromagnetic actuator. Applied Physics Letters. 90;121129;2007.
[16] Dong L, Agarwal AK, Beebe DJ, Jiang H. Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature. 442;551-554;2006.
[17] Liu CX, Park J, Choi JW. A planar lens based on the electrowetting of two immiscible liquids. Journal of Micromechanics and Microengineering. 18;035023;2008.
[18] Cheng CC, Yeh JA. Dielectrically actuated liquid lens. Optical Society of America. 15;7140-7145;2007.
[19] Wolfe DB. Dynamic control of liquid-core/liquid-cladding optical waveguides. Proceedings of the National Academy of Sciences. 101;12434-12438;2004.
[20] Tang SK, Stan CA, Whitesides GM. Dynamically reconfigurable liquid-core liquid-cladding lens in a microfluidic channel. Lab on a Chip. 8;395-401;2008.
[21] Tsai CG, Yeh JA. Circular dielectric liquid iris. Optics Letters. 35;2484-2486;2010.
[22] Mueller P, Spengler N, Zappe H, Moench W. An Optofluidic Concept for a Tunable Micro-iris. Journal of Microelectromechanical Systems. 19;1477-1484;2010.
[23] Hongbin Y, Guangya Z, Siong CF, Feiwen L. Optofluidic variable aperture. Optics Letters. 33;548-550;2008.
[24] Song C, Nguyen NT, Asundi AK, Low CL-N. Tunable optofluidic aperture configured by a liquid-core/liquid-cladding structure. Optics Letters. 36;1767-1769;2011.
[25] Song CL, Nguyen NT, Yap YF, Luong TD, Asundi AK. Multi-functional, optofluidic, in-plane, bi-concave lens: tuning light beam from focused to divergent. Microfluidics and Nanofluidics. 10;671-678;2011.
[26] Xiong S, Liu AQ, Chin LK, Yang Y. An optofluidic prism tuned by two laminar flows. Lab on a Chip. 11;1864-1869;2011.
[27] Hecht E. Optics. Addison-Wesley. 4th;2002.
[28] Schneegass I, Brautigam R, Kohler JM. Miniaturized flow-through PCR with different template types in a silicon chip thermocycler. Lab on a Chip. 1;42-49;2001.
[29] Guo H, Zhao P, Xiao G, Zhang Z, Yao J. Optical Manipulation of Microparticles in an SU-8/PDMS Hybrid Microfluidic Chip Incorporating a Monolithically Integrated On-Chip Lens Set. IEEE Journal of Selected Topics in Quantum Electronics. 16;919-926;2010.
[30] Yamamoto T, Nojima T, Fujii T. PDMS-glass hybrid microreactor array with embedded temperature control device. Application to cell-free protein synthesis. Lab on a Chip. 2;197-202;2002.
[31] Lorenz H, Despont M, Fahrni N, Brugger J, Vettiger P, Renaud P. High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS. Sensors and Actuators A-Physical. 64;33-39;1998.
[32] Zhang J, Tan KL, Gong HQ. Characterization of the polymerization of SU-8 photoresist and its applications in micro-electro-mechanical systems (MEMS). Polymer Testing. 20;693-701;2001.
[33] Duffy DC, McDonald JC, Schueller OJ, Whitesides GM. Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). Analytical chemistry. 70;4974-4984;1998.
[34] McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H, Schueller OJ, et al. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis. 21;27-40;2000.
[35] Ng JMK, Gitlin I, Stroock AD, Whitesides GM. Components for integrated poly(dimethylsiloxane) microfluidic systems. Electrophoresis. 23;3461-3473;2002.