簡易檢索 / 詳目顯示

研究生: 施佑宜
Shih, Yu-I
論文名稱: 以水熱法和熱處理製作多孔氧化鋅奈米結構及其特性分析與應用
Fabrication and characteristics of Porous ZnO nanostructures by hydrothermal growth and thermal annealing
指導教授: 劉全璞
Liu, Chuan-Pu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 92
中文關鍵詞: 氧化鋅水熱法多孔
外文關鍵詞: ZnO, Hydrothermal, Porous
相關次數: 點閱:91下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化鋅是一種具有寬能隙(Eg=3.37 eV)及大的激子束縛能之半導體材料,因此在光電材料上深具發展潛力。透過不同的製程可得到不同形貌之氧化鋅奈米結構,其中多孔氧化鋅奈米結構由於具有高表面積之特性,近年來許多研究將其應用於工作面積需求較大之元件上,如光感測器、氣體感測器及染料敏化太陽能電池等。然而現階段多孔氧化鋅奈米結構的成長,多為多晶結構,或是雖為單晶結構但卻非沿C軸呈規則排列(well-aligned)成長,且孔隙度亦無法有效控制。
    本實驗利用一種新穎的製程方式,結合濺鍍和水熱法製程,在氫氣與氬氣混合氣體的還原氣氛下作熱處理,成長出規則排列且具有良好結晶性質之多孔氧化鋅奈米結構,同時藉由退火溫度的控制,可得到不同孔隙度之氧化鋅奈米結構,在形貌上則可得到各別獨立之多孔氧化鋅奈米柱以及海綿狀(sponge-liked)的緊密排列多孔柱狀晶,利用SEM觀察水熱法各項參數的改變對於氧化鋅奈米結構形貌的影響,以及後續熱處理對孔洞的大小和分佈之影響,輔以電子精密天秤觀察孔洞形成所需之臨界溫度,而XRD及TEM之分析說明了多孔氧化鋅奈米結構具有良好的結晶性質,最後利用PL和拉曼光譜對不同孔隙度之氧化鋅做光性分析。

    ZnO is a promising material with potential applications in electric and optoelectronic devices, due to direct wide bandgap (Eg=3.37 eV) semiconducting properties and large exciton binding energy. Various morphologies of ZnO could be obtained by different processes. Porous ZnO is one of the structures which exhibits high surface area, and has been applied to the devices such as photo detectors, gas sensors, DSSCs, and etc. However, there are still lack of methods to synthesizing porous semiconductor nanostructures with good crystallinity and uniformity up to now.
    In this study, we demonstrate two types of ZnO porous nanostructures with excellent crystallinity and large-area uniformity only by hydrothermal process followed by thermal annealing under Ar/H2 mixture gas; meanwhile, the porosity can be controlled by annealing time and temperature. The SEM was used to observe the influence of different parameters of hydrothermal process on ZnO’s morphology, and the distribution of pore and pore size under different annealing conditions. We also used high precision electronic balance to observe the critical temperature while the pores were formed, and the good crystallinity and uniformity of porous ZnO nanostructures were proved by XRD and TEM analyses. Finally, the optical characteristics of ZnO with different porosities were analyzed by Photoluminescence and Raman spectroscopy.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 V 圖目錄 VII 表目錄 X 第一章 前言 1 1-1簡介 1 1-2 研究動機 2 第二章 理論基礎 4 2-1氧化鋅簡介 4 2-1-1氧化鋅晶體結構與性質 4 2-1-2氧化鋅之應用 9 2-2氧化鋅奈米結構製程 11 2-2-1化學氣相沉積(Chemical Vapor Deposition;CVD) 11 2-2-2物理氣相沉積(Physical Vapor Deposition;PVD) 12 2-2-3水熱法(Hydrothermal Process) 15 2-2孔洞氧化鋅奈米結構 19 2-3染料敏化太陽能電池(Dye-Sensitized Solar Cells,DSSC) 27 第三章 實驗方法與分析 33 3-1實驗方法及步驟 33 3-1-1製備孔洞氧化鋅奈米結構 33 3-1-1-1試片前處理 33 3-1-1-2成長氧化鋅奈米結構 33 3-1-1-3孔洞氧化鋅結構製程 34 3-1-2製備染料敏化太陽能電池 35 3-1-2-1染料浸泡 35 3-1-2-2電池組裝 35 3-1-2-3電解液配製 36 3-1-2-4電池效能量測 36 3-2實驗用藥品 36 3-3實驗流程圖 37 3-4儀器設備 38 3-4-1製程儀器簡介 38 3-4-1-1射頻濺鍍機 38 3-4-2分析儀器簡介 39 3-4-2-1原子力顯微鏡 39 3-4-2-2掃描式電子顯微鏡 41 3-4-2-3穿透式電子顯微鏡 43 3-4-2-4螢光激發光譜 45 3-4-2-5太陽光模擬器 46 第四章 結果與討論 47 4-1水熱法成長氧化鋅奈米結構 47 4-1-1緩衝層的影響 47 4-1-2水熱法各項參數之影響 51 4-2氧化鋅奈米多孔結構的形成 59 4-2-1孔洞形成機制 59 4-2-2熱處理條件對孔洞之影響 62 4-2-3結構分析 69 4-2-4光性分析 76 4-2-5多孔氧化鋅於DSSC之應用 82 第五章 結論 86 第六章 未來工作 88 第七章 參考文獻 89

    [1] Y. Yang, B.K. Tay, X.W. Sun, J Y. Sze, Z.J. Han, and J.X. Wang, Appl. Phys. Lett. 91, 071921 (2007)
    [2] G.W. She, X.H. Zhang, W.S. Shi, X. Fan, J.C. Chang, C.S. Lee, S.T. Lee, C.H. Liu, Appl. Phys. Lett. 92, 053111 (2008)
    [3] C.C. Wang, K. Yu, L.J. Li, Q. Li, Z.Q. Zhu, Appl. Phys. A 90, 739 (2008)
    [4] H.M. Cheng, W.H. Chiu, C.H. Lee, S.Y. Tsai, .W.F. Hsieh, J. Phys. Chem. C, 112, 42 (2008)
    [5] X.D. Wang, C.J. Summers, Z.L. Wang, Adv. Mater. 16, 14 (2004)
    [6] Z.H. Jing, J.H. Zhan, Adv. Mater. 20, 4547 (2008)
    [7] W. Zhang, R. Zhu, X.Z. Liu, B. Liu, S. Ramakrishna, Appl. Phys. Lett. 95, 043304 (2009)
    [8] M. Law, L. Greene, J.C. Johnson, R. Saykally and P.D. Yang, Nature Mater. 4, 455 (2005)
    [9] Handbook of Sputter Deposition Technology, Kiyotaka Wasa, Shigeru Hayakawa (1991)
    [10] B. Meyer and D. Marx, Phys. Rev. B 67, 035403 (2003)
    [11] B. Xiang, P. Wang, X. Zhang, and S.A. Dayeh, Nano Lett., 7, 323 (2007)
    [12] T. Makino, A. Tsukazaki, M. Kawasaki, A. Ohtomo, and H. Koinuma, Japn. J. Appl.Phys. 45, 6346 (2006)
    [13] Q. X. Zhao, P. Klason, M. Willander, H. M. Zhong, W. Lu, J.H. Yang, Appl. Phys. Lett. 87, 211912 (2005)
    [14] B.X. Lin, Z.X. Fu, Y.B. Jia, and G.H. Liao, J. ECS, 148 (3), G110 (2001)
    [15] W.S. Hu, Z.G. Liu, R.X. Wu, Y.F. Chen, W. Ji, T. Yu, and D. Feng, Appl. Phys. Lett. 71, 548 (1997)
    [16] N.Takahashi, K. Kaiya, K. Omichi, T. Nakamura, S. Okamoto, H. Yamamoto, J. Cryst. Growth Des., 209, 822 (2000)
    [17] K. Haga, M. Kamidaira, Y. Kashiwaba, T. Sekiguchi, H. Watanabe, J. Cryst. Growth Des., 77, 214 (2000)
    [18] H.J. Ko, S.K. Hong, Y.F. Chen, T. Yao, Thin Solid Films, 409, 153-160 (2002)
    [19] K. Miyamoto, M. Sana, H. Kato, T. Yao, J. Cryst. Growth Des., 265, 34 (2004)
    [20] J. Tsujino, N. Homma , T. Sugawara , I. Shimono , Yoshihiko, Thin Solid Films 407, 86 (2002)
    [21] K.S Sree Harsha, Principles of Physical Vapor Deposition of Thin Films, ELSEVIER, USA (2006)
    [22] J.H. Huang, C.Y. Wang, C.P. Liu, W.H. Chu, Y.J. Chang, Appl. Phys. A 87, 749–753 (2007)
    [23] L. Vayssieres, K. Keis, S.E. Lindquist, and A. Hagfeldt, J. Phys. Chem. B, 105 3350-3352 (2001)
    [24] Y.F. Hsu, Y. Y. Xi, K. H. Tam, A. B. Djurisic, J.M. Luo, C.C. Ling, C. K. Cheung, A.M.C. Ng, W.K. Chan, X. Deng, C.D. Beling, S. Fung, K.W. Cheah, P.W.K. Fong, and C.C. Surya, Adv. Funct. Mater. 18, 1020–1030 (2008)
    [25] Q. Ahsanulhaq, A. Umar and Y.B. Hahn, Nanotechnology 18, 115603 (2007)
    [26] J. Zhang, S.R. Wang, M.J. Xu, Y. Wang, B.L. Zhu, S.M. Zhang,W.P. Huang, and S.H. Wu, J. Cryst. Growth Des.,9, 3532 (2009)
    [27] W. Zhang, R. Zhu, X.Z. Liu, B. Liu, and S. Ramakrishna, Appl. Phys. Lett. 95, 043304 (2009)
    [28] C.Y. Huang, Y.C. Hsu, J.G. Chen, V. Suryanarayanan, K.M. Lee, and K.C. Ho, Sol. Energy Mater. Sol. Cells, 90, 2391 (2006)
    [29] M.G. Kang, K.S. Ryu, S.H. Chang, N.G. Park, J.S. Hong, and K.J. Kim, Bull. Korean Chem. Soc., 25, 742 (2004)
    [30] Z.S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, Chem. Rev. 248, 1381 (2004)
    [31] B. Tan and Y.Y. Wu, J. Phys. Chem. B, 110, 32( 2006)
    [32] B. Reeja-Jayan, E. De la Rosa, S. Sepulveda-Guzman, R. A. Rodriguez, and M. J. Yacaman J. Phys. Chem. C, 112, 240 (2008)
    [33] G. Q. Ding, W. Z. Shen, M. J. Zheng, and D. H. Fan, Appl. Phys. Lett. 88, 103106 (2006)
    [34] A.B.F. Martinson, J.w. Elam, J.T. Hupp, and M.J. Pellin, Nano Lett. 7, 2183 (2007)
    [35] Z.F. Liu, Z.G. Jin, W. Li, J.J. Qiu, J.A. Zhao,and X.X. Liu, Appl. Surf. Sci., 252, 5002 (2006)
    [36] H.Q. Wang, G.H. Li, L.C. Jia, G.Z. Wang, and C.J. Tang, J. Phys. Chem. C 2008, 112, 11738 (2008)
    [37] W. Zhang, D. Zhang, T.X. Fan, J. Ding, Q.X. Guo, and H. Ogawa, Nanotechnology, 17, 840 (2006)
    [38] C.X. Xu, G.P. Zhu, Y. Yang, Z.L. Dong, X.W. Sun, and Y.P. Cui, J. Phys. Chem. C, 112, 13922 (2008)
    [39] B. O’Regan, M. Grätzel, Nature, 353, 737 (1991)
    [40] R. Katoh, A. Furube, T. Yoshihara, K. Hara, G. Fujihashi, S. Takano, S. Murata, H. Arakawa, and M. Tachiya, J. Phys. Chem. B, 108, 4818 (2004)
    [41] M. Grätzel, Nature, 414, 338 (2001)
    [42] K. Keis, E. Magnusson, H. Lindstrom, S.E. Lindquist, A. Hagfeldt, Sol. Energy Mater. Sol. Cells, 73, 51 (2002)
    [43] D. Gebeyehu, C. J. Brabec, Synth. Met. 125, 279 (2002)
    [44] K.H. Hara, T. Kinoshita, K. Sayama, and H. Arakawa, Sol. Energy Mater. Sol. Cells, 70, 151 (2001)
    [45] A. Zaban, J. Zhang, Y. Diamant, O. Melemed, and J. Bisquert, J. Phys. Chem.B, 107, 6022 (2003)
    [46] A. Kay, M. Grätzel, Sol. Energy Mater. Sol. Cells, 44, 99 (1996)
    [47] X.F. Zhou, Z.L. Hu, Y.Q. Fan, S. Chen, W.P. Ding, and N.P. Xu, J. Phys. Chem. C, 112, 11722 (2008)
    [48] Q.Y. Cui, K. Yu, N. Zhang, and Z.Q. Zhu, Appl. Surf. Sci., 254, 3517 (2008)
    [49] Chris G. Van de Walle, Phys. Rev. Lett., 85 1012 (2000)
    [50] Sergei B. Orlinskii, Jan Schmidt, Pavel G. Baranov, Phys. Rev. Lett., 88, 045504 (2002)
    [51] Zhen Zhou, K. Kato, T. Komaki, M. Yoshino, H. Yukawa, M. Morinaga, International Journal of Hydrogen Energy 29, 323 (2004)
    [52] K. A. Alim, V. A. Fonoberov, M. Shamsa, and A. A. Balandin, J. Appl. Phys., 97, 124313 (2005)
    [53] J.D. Ye, S. Tripathy, F.F. Ren, X.W. Sun, G.Q. Lo, and K.L. Teo, Appl. Phys. Lett., 94, 011913 (2009)
    [54] R. Cusco, E. Alarcon-Llado, J. Ibanez, L. Artus, J. Jimenez, B.Wang, M. J. Callahan, Phys. Rev. B, 75, 165202 (2007)
    [55] W.H. Chiu, C.H. Lee, H.M. Cheng, H.F. Lin, S.H. Liao, J.M. Wu, and W.F. Hsieh, Energy Environ. Sci., 2, 694, (2009)

    下載圖示 校內:2020-12-31公開
    校外:2020-12-31公開
    QR CODE