簡易檢索 / 詳目顯示

研究生: 丁俊彰
Ding, Jiun-jang
論文名稱: 酒石酸溶膠法製備鐵酸鉍奈米線
Synthesis of multiferroic BiFeO3 nanowries by tataric acid gel process
指導教授: 方滄澤
Fang, Tsang-Tse
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 119
中文關鍵詞: 鐵酸鉍奈米
外文關鍵詞: nanowires, BiFeO3
相關次數: 點閱:53下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • One-dimensional 奈米結構在現今科學引起了廣大的興趣,由於它們具有特殊和優越的性質相對於塊材(bulk)的結構。本研究在探討將材料BiFeO3(簡稱BFO)生成1維奈米結構nanowire;此化合物是少數同時具有鐵電性ferroelectricity(居禮溫度Tc=810℃) 和反鐵磁性antiferromagnetism(Neel temperature TN =380℃)在室溫下共存的材料 ,因此被認為具有很大的應用潛力在於磁、介電材料領域的應用。BFO材料在於1960’S,就已經被發現,但是它在電子工業應用方面得不到發展,主要有以下幾個原因: 一方面,BiFeO3中存在Bi和Fe,由於Bi和Fe的存在影響到製備單相BiFeO3材料,而且鐵的價數容易發生波動(Fe3+轉化為Fe2+),鐵價數的波動,使得BiFeO3漏電流較大;另一方面BiFeO3本身具有的低介電常數和低電阻率致使很難觀測到電滯曲線;另外,固相法合成BiFeO3往往得不到單相,並且經常含有少量的Bi2Fe4O9、Bi25FeO40等雜質。近年來,人們對BiFeO3的研究又有了新的興趣,主要是BiFeO3在收音機、電視、微波、通訊衛星、數據儲存和永磁體等領域將會有很好的應用,因此,近年來很多學者通過各種不同的方法來製備純的BiFeO3粉體,主要有2種方法(1)固相法,以Bi2O3和Fe2O3為原料在800~830℃燒結,Bi2O3和Bi2Fe4O9等雜相用硝酸除去得到BiFeO3純相;(2)化學法,利用共沉積法 、 鐵酸鹽添加螯合劑前驅法、sol-gel合成法製備單相BiFeO3。奈米技術是近幾十年來的新興科技,所以此論文所研究的是使用現今的奈米技術和觀念,改變BFO材料的結構,以期能得到更佳的物理性質,本實驗是以硝酸鉍,硝酸鐵和酒石酸為螯合劑,製備BiFeO3單晶奈米線結構。文獻[40]上記載的BFO奈米線生成大部分所使用的是NCA (porous nanochannel alumina) template 生成;本研究所要介紹的是另一種不使用NCA template 而在Si substrate 生成所欲得到的奈米線結構。

    One-dimensional nano-structures have generated considerable interest, due to their unique and superior qualities opposite bulk structures. The investigation in BiFeO3(BFO) material is to transform its morphology into nanowires. The BiFeO3 compound is one of the few materials with coexistent ferroelectricity (TC =810℃) and antiferromagnetism (Neel temperature TN =380℃) at room temperature. Therefore, BFO material is considered to have the great potential for applications in magnetic as well as in ferroelectric devices.
    Though BiFeO3 was discovered in the 1960’s, but it has the week use in the field of electronics for several reasons: one is that Bi and Fe atoms make it hard form BiFeO3 single phase and ionic iron valence changes from tervalency to bivalence easily result in BiFeO3 has quite high leakage current. In the other hand BiFeO3 its low dielectric constant and resistance make it hard to measure hysteresis loop; furthermore BiFeO3 single phase cannot be synthesized by solid state method and it often includes Bi2Fe4O9、Bi25FeO40 etc impurity phases. Recently, it has generated considerable interest, being a material with great potential applications, by a combination of its magnetic and electric properties in the field of electronics: radio, television, audio-video and digital recording, and as permanent magnets. Thus, the synthesis of bismuth ferrite materials subject of renewed research and attempts have been made to obtain a pure phase. There are two major preparation technique, solid-state reactions based on Bi2O3 andFe2O3 have been used, with thermal treatments around 800°-830℃, but unreacted Bi2O3/ Bi2Fe4O9 were present and removed by washing with HNO3.. Another chemical method includes simultaneous precipitation / coprecipitation involving starting solutions such as Bi and Fe nitrates with ammonium hydroxide and sol-gel method to obtain pure-phase BiFeO3 .Nano-stucture synthesis is the new technique for the last decades. So, the subject of the research is to change BFO material structure by recently nano-techniques and hope to get better physical qualities. In the literature[40], BFO nanowires synthesis has successful done by NCA (porous nanochannel alumina) template, but in the study represents another BFO nanowires synthesis in Si substrate without using NCA template.

    中文摘要.................................................I 英文摘要.................................................II 本文目錄................................................III 圖目錄...................................................IV 第一章 奈米材料..........................................1 1.1前言...................................................1 1.2奈米簡述...............................................3 1.3 奈米科技運用簡述......................................4 第二章 文獻回顧..........................................7 2.1 奈米製程原理敘述......................................7 High-energy milling.......................................7 Vapour phase processes..............................9 Chemical vapor deposition (CVD) ....................9 Laser ablation.....................................10 Electro-explosion..................................10 Sputtering.........................................11 Arc-discharge......................................11 Liquid phase.......................................12 Sol-gel............................................12 Self- assembly.....................................13 2.2 形成一維奈米線材料的方法.............................14 Materials with Highly Anisotropic Crystal Structures14 Nucleation and Growth...............................16 Template-Directed...................................18 Channels in Porous template.........................20 Templating Against Self-Assembled Molecular Structur23 Templating Against Existing Nanostructures..........25 Vapor-Liquid-Solid Methods and liquid template......27 Solution-Liquid-Solid Methods.......................29 2.3 BiFeO3 結構和特性...................................28 2.3-1 BiFeO3 結構........................................31 2.3-2 BiFeO3鐵電性質 (ferroelectric property) ...........40 2.3-3 BiFeO3介電性質 (dielectric property)-1.............43 2.3-4材料的磁性 (magnetic property) .....................48 2.3-5複鐵式材料(Multiferroic material) ..................54 2.3-6 BiFeO3 介電性質(dielectric constant)-2.............58 2.3-7 BiFeO3 磁性質 (magnetic property) .................61 2.4 BiFeO3 synthesis....................................63 mechanochemical synthesis.........................63 Pechini method…..................................64 solid state method................................67 ferrioxalate precursor method.....................68 sol –gel synthesis method........................70 EDTA acid complexing sol-gel process..............72 precipitation method..............................75 soft chemical synthesis...........................78 第三章 實驗步驟與方法...................................80 3.1 實驗設備及流程.......................................80 3.2 基板清洗.............................................81 3.3 TEM 試片製備.........................................81 3.4 材料相組成...........................................82 3.6 材料微結構...........................................82 3.5材料的形態(morphology) 和大小(size) .................82 第四章 實驗結果與討論....................................83 4.1 XRD pattern 分析樣品相組成...........................83 4.2 電子顯微鏡分析材料的形態(morphology) 和大小(size) ..85 4.3 EDS 成份分析.........................................92 4.4材料微結構分析........................................95 第五章 結論............................................107 References..............................................108

    [1]. H. Gleiter, in:Proc. 2ndRisψ International Symposium on Metallurgy and Materials Science, eds N.Hansen et al., Risψ National Laboratory, Roskilde (1981), pp.15-21
    [2]. H. Gleiter, in: Mechanical Properties and Deformation Behaviour of Materials,eds M.Nastasi et al., Kluwer Academic Publishers, Amsterdam(1993), pp. 3-35
    [3]. Size- and support-dependency in the catalysis of gold. Haruta, M. Catal.Today,1997, 36, pp 153-166
    [4]. Gadolinium-loaded nanoparticles engineered from microemulsion templates.Oyewumi, M.O. and Mumper, R.J. Drug Dev Ind Pharm. 2002 Mar 28(3):317-28.
    [5]. Superhard silicon nanopheres. Gerbericha, W. et al. Journal of the Mechanics and Physics of solids 51 (2003) 979-992
    [6]. Gold nanoparticle thin films Colloids and Surfaces A: Physicochemical and Engineering Aspects 202(2002)119-126. Ung, T., Liz-Marza, L. and Mulvaney, P.
    [7]. Aiyer, H. N., Vijayakrishmnan, V., Subanna, G. N. and Rao, C. N. R. Surf.Sci. 1994, 313, 392
    [8]. Size-Dependent Chemistry: Properties of Nanocrystals. Rao, C. N. R.,Kulkarni, G. U., Thomas, P. J. and Edwards P.P. Chem. Eur. J. 2002, 8, No. 1 pp28-35.
    [9] Processing of advanced materials using high-energy mechanical milling.Zhang.D.L. Progress in Materials Science 49(2004) pp 537-560
    [10] Synthesis of Nanostructureed Materials by Mechanical Milling: Problems and Opportunities. Koch, C. C. Nanostructured Materials, 1997, Vol.9, pp13-22
    [11] The synthesis of TiN by ball milling – a neutron diffraction study.109 Campball, S., Hofmann, M. and Calka, A. Physica B 276-278(2000) pp 899-900
    [12] Formation and environmental staility of nanocrystalline and amorphous hydrides in the 2Mg-Fe mixture processed by controlled reactive mechanical
    alloying (CRMA). Varin, R., Li, S., Calka, A. and Wexler, D. Journal of Alloys and Compounds 373 (2004) pp 270-286.
    [13] Zno nanoparticles synthesized by mechanochemical processing. Tsuzuki, T.and McCormick, P. G. Scripta Mater. 44(2001) pp 833-837
    [14] Synthesis of tin oxide nanoparticles by mechanochemical reaction. Huaming Yang et al. Journal of Alloys and Compounds 363(2004) pp271-274
    [15] Mechanochemical synthesis of cobalt oxide nanoparticles. Huaming et al.Materials Letters 58 (2004) pp387-389
    [16] Synthesis of nanocrystalline ZrO2 powders by mechanochemical reaction of ZrCl4 with LiOH. Dodd, A. and McCormick, P. G. Journal of European Ceramic Society 22(2002) pp 1823-1829
    [17] In2O3 nanoparticles synthesized by mechanochemical processing. Huaming et al. Scripta Materialia, 50(2004) pp 413-415.
    [18] Mechanochemical Synthesis of metal sulphide nanoparticles. Tsuzuki, T. and McCormick, P. G. Nanostrucured Materials (1999) Vol.12, pp75-78
    [19] Mechanochemical Route for sulphide nanoparticles preparation. Balaz, P.,Boldizarova, E., Godocikova, E. and Braincin, J. Materials Latters 57(2003) pp 1585-1589
    [20] Mechanochemical synthesis and characterization of nanoparticluate samarium-doped cerium oxide. Hos, J. and McCormick, P. G. Scripta Materialia 48(2003) pp 85-90.
    [21] Mechanochemical Synthesis of ultrafine Fe Powder. Ding, J., Miao,110 W.F.,McCormick, P.G. and Street.R. Applied Physics Letters, Vol. 67, Issue 25,(1995) pp 3804-3806.
    [22] Design of metal nanoparticle synthesis by vapour flow condensation. Wegner,K. Walker, B., Tsantilis, S. and Prastinins, S. Chemical Engineering Science 57(2002) pp 1753-1762
    [23]Nanoparticle formation by laser ablation. Ulmann, M., Friedlander, S. and Schmidt-Ott A. Journal of Nanoparticle Research 4(2002) pp 499-509
    [24] Formation of small gold clusters in solution by laser excitation of interband transition.Fumitaka Mafune, Tamotsu Kondow. Chemical Physics Letters 372(2003) pp 199-204.
    [25]Preparation of Cu, Ag, Fe, and Al nanoparticles by the exploding wire technique. Sen, P. et al. Proc. Indian Acad. Sci. (Chem Sci), Vol. 115, Nos 5&6 (2003) pp 499-508.
    [26] Nanosized Alumina Fibers. Tepper, F., Lerner, M. and Ginley, D. American Ceramic Society Bulletin,Vol. 80, No. 6 pp 57-60(2001)
    [27] Active Metal powders that burn efficiently and quickly-obtd. By electro-explosion of wires composed of e.g. aluninium in non oxidizing atmos. E.g.argon to produce micron sized powder. Ivanov, G . V. Patent EP718061-A.
    [28] Fabrication of Au nanoparticles by radiofrequency magnetron sputtering.Terauchi, S., Koshizaki, N. and Umehara, H. Nanostructures Materials. Vol. 5.
    1.(1995) pp 71-78
    [29] Nanoparticles in Catalysis, in Nanoparticles: Building Blocks for Nanotechnology Zhong, C. J., Maye, M. M., Luo, J., Han, L. and Kariuki, N.N.,ed. By Rotello, V. M. Kluwer Academic Publishers. Chapter 5, pp 113-144
    2004.111
    [30]a) J.J. Stejny, R. W. Trinder, J. Dlugosz, J. Mater. Sci. 1981, 16, 3161. b)J.Stejny, J. Dlugosz, A. Keller, J. Mater. Sci. 1979 , 14, 1291.
    [31]a) B. Gates, B. Mayers, B. Cattle, Y. Xia, Adv. Funct. Mater. 2002, 12, 219.
    b) B. Gates, Y. Yin, Y. Xia, J. Am. Chem. Soc. 2000, 122, 12582
    [32] a) J. Jorritsma, M. A. M. Gijs, J. M. Kerkhof, J. G. H. Stienen,Nanotechnology 1996, 7, 263. b) E. Olson, G. C. Spalding, A. M. Goldman, M.J. Rooks, Appl. Phys. Lett. 1994, 65, 2740.
    [33] T. Muller, K.-H. Heinig, B. Schmidt. Nucl Instrum. Methods Phys. Res 2001,175, 468.
    [34] A. Sugawara, T. Coyle, G. G. Hembree, M. R. Scheinfein. Appl Phys Lett.1997, 70, 1043.
    [35] Metals: a) T. Gao, G. Meng, J. Zhang, S. Sun, L. Zhang.Appl. Phys. A. 2002,74, 403 b) V. M. Fedosyuk, O. I. Kasyutich, W. Schwarzacher. J. Magn. Magn.Mater. 1999, 198-199, 246. C) H. Masuda, K. Fukuda. Science 1995, 268, 1466. D)C. J. Brumlik, V. P. Menon, C. R. Martin. J. Mater. Res. 1994, 9, 1174 e) C. A.Huber, T. E. Huber, M. Sadoqi, J. A. Lubin, S. Manalis, C. B. Prater.Science 1994,
    263, 800 f) V. M. Cepak, C. R. Martin, J. Phys Chem B1998, 102, 9985. G) T.M. Whitney, J. S. Jiang, P. C. Searson, C. L. Chien,Science 1993,261, 1316.
    [36] Metals: a) H. Cao, Y. Xu, J. Hong, H. Liu, G. Yin, B. Li, C. Tie, Z. Xu,Adv.Mater.2001, 13, 1393. B) X. Zhang, L. Zhang, G. Meng, G. Li, N. Jin-Phillipp, F.Phillipp, Adv. Mater. 2001, 13, 1238. C) G. S Cheng, L. D. Zhang, Y. Zhu, G. T.Fei, L. Li, C. M. Mo, Y. Q. Mao, Appl Phys Lett 1999, 75, 2455.
    [37] Ceramics: a)M. Zheng, L. Zheng, X. Zheng, J. Zheng, G. Li,Chem Phys lett 2001 334 298 b) Y. Lei, L. D. Zhang, G. W. Meng, G. H. Li, X. Y. Zhang, C. H.Liang, W. Chen, S. X. Wang, Appl phys lett 2001 78 1125 d) Y. Li, G. W.112
    Meng, L. D. Zhang, Appl Phys Lett 2000 76 2011 e) P.Hoyer, Langmuir 1996 12 1411
    [38]Polymers: a) S. A. Sapp, D. T. Mitchell, C. R. Martin, Chem. Mater 1999,11,1183. B) R. P. Burford, T. Tongtam, J Mater Sci 1991 26 3264 C) Z. Cai, C. R.Martin, J Am Chem Soc 1989, 111, 4138
    [39] a) Z.Zhang, D. Gekhtman, M. S. Dresselhaus, J. Y. Ying, Chem. Mater.1999,11, 1659. B) Z. Zhang, J.Y. Ying, M. S. Dresselhaus, J. Mater. Res. 1998, 13,1745.
    [40] Synthesis and characterization of highly ordered BiFeO3 multiferroic nanowire arrays. X. Y. Zhanga,b,*, J. Y. Daia, C.W. Laia.Progress in Solid State Chemistry 33 (2005) 147-151
    [41]Y.Xial, J. A. Rogers, K. E. Paul, G. M. Whitesides, Chem. Rev. 1999, 99,1823.Fu-Ken Liu, Yu-Cheng Chang, Fu-Hsiang Ko, Tieh-Chi Chu. Microwave rapid heating for the synthesis of gold nanorods. Materials Letters 58 (2004)
    373-377
    [42] S. O. Obare, N. R. Jana, C. J. Murphy, Nano Lett 2001,1,727.
    [43] K. S. Mayya, D. I. Gittins, A. M. Dibaj, F. Caruso, Nano Lett 2001,1,727.
    [44] Y. Yin, Y. Lu, Y. Sun, Y. Xia, Nano Lett 2002,2,427.
    [45] R. S. Wagner, W. C. Ellis, Appl. Phys. Lett.1964,4,89.
    [46]a) X. F. Duan, C. M. Lieber, Adv. Mater .2000,12,298 b) X. F. Duan, C. M.Lieber, J. Am. Chem. Soc.2000,122,188. C) A. M. Morales, C. M. Lieber,Science 1998,279,208.
    [47] Elemental semiconductors: a) Y. Wu, P. Yang,Chem. Mater.2000,12,605. B)113 Y. J. Zhang, Q. Zhang, N. L. Wang, Y. L. Yan, H. H. Zhou, J. Zhu, J. Cryst.Growth 2001,226,185. C) J. Westwater, D. P. Gosain, S. Tomiya, S. Usui,J.Voc.Sci. Technol.1997,B15,554.
    [48] III-V semiconductors: a) C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L.Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, Y. F. Chen,J. Am.Chem.Soc.2001,123,2791. B) J. Zhang, X. S. Peng, X. F. Wang, Y. W. Wang, L. D.
    Zhang, Chem. Phys Lett 2001,345,372 c) M. Q. He, P. Z. Zhou, S. N. Mohammad,G. L. Harris, J. B. Halpern, R. Jacobs, W. L. Sarney, L. Salamanca-Riba,J. Cryst.Growth 2001,231,357. D) W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, S. T. Lee,J. Vac. Sci. Tech. B 2001, 19,1115. E) C. C. Chen, C. C. Yeh, Adv. Mater.2000,12 738. F) T. Shimada, K. Hiruma, M. Shirai, M. Yazawa, K. Haraguchi, T.Sato, M. Matsui, T.Katsuyama,Superlattices Microstruct.1998,24,453. G) K.Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraquchi, M. Koguchi, H.Kakibayashi, J Appl. Phys.1995,77,447. h) M. Yazawa, M. Kohuchi, A. Muto, K.
    Hiruma, Adv Mater. 1993, 5,577
    [49]II-VI semiconductors: a) Y.W. Wang, L. D. Zhang, C. H. Liang, G. Z. Wang,L. D. Zhang, X. S. Peng, Chem. Phys. Lett. 2002,357,314. B) Y. W. Wang, G. W.Meng, L. D. Zhang, C. H. Liang, J. Zhang, Chem Mater.2002,14,1773. C) X.
    Duan, C. M. Lieber, Adv.Mater.2000,12,298 d) M. Lopez-Lopez, A.Guillen-Cervantes, Z. Rivera- Alvarez, I. Hernandez-Calderon, J. Cryst.Growth1998,193,528.
    [50] Oxides: a) Y. J. Chen, J. B. Li, Y. S. Han, X. Z. Yang, J. H. Dai, J. Cryst Growth2002 ,245,163. B) X. C. Wu, W. H. Song, K. Y. Wang, T. Hu, B. Zhao, Y.P. Sun, J. J. Du, Chem. Phys. Lett.2001, 336,53. C) M. H. Huang, Y. Wu, H.Feick, E. Webber, P. Yang,Adv Mater 2000,13,113.
    114
    [51] Y. Wu, P. Yang, J. Am Chem. Soc 2001,123,3165.
    [52] T. J. Trentler, K. M. Hickman, S. C. Geol, A. M. Viano, P. C. Gibbons, W. E.Buhro, Science 1995, 270,1791.
    [53] a) S. D. Dingman, N. P. Rath, P. D. Markowitz, P. C. Gibbons, W. E. Buhro,Angew. Chem. Int. Ed.2000, 39, 1470. B) T. J. Trentler, S. C. Goel, K. M. Hick man, A. M. Viano, M. Y. Chiang, A. M. Beatty, P. C. Gibbons, W. E> Buhro, J Am. Chem. Soc 1997, 119,2172.
    [54] a) P. D. Markowitz, M. P. Zach, P. C. Gibbons, R. M. Penner, W. E. Buhro, J Am. Chem. Soc 2001,123,4502. B) O. R> Lourie, C. R. Jones, B. M. Bartlett, P. C.Gibbons, R. S. Ruoff, W. E. Buhro,Chem Mater 2000,12,1808 C) T. J.
    Trentler, S. C. Goel, K. M. Hickman, A. M> Viano, M. Y. Chiang, A. M. Beatty,P. C. Gibbons, W. E. Buhro, J. Am. Chem. Soc 1997,119,2172.
    [55] a) X. Lu, T. Hanrath, K. P. Johnston, B. A. Korgel, Nano Lett. 2003,3,93. B)T. T. Hanrath, B. A. Korgel, J. Am. Chem. Soc.2001,124,1424. C) J. D. Holmes,K.P.Johnston, R. C. Doty, B. A. Korgel, Science 2000, 287, 1471.
    [56] 0.154 g HAuCl4‧3H2O was dissolved in 15 ml pure water. The gold salt wastransferred to chloroform by adding 10.2ml chloroform containing 1.114g of a
    phase transfer catalyst, (C8H17)4NBr, and stirred for approximately 1 hour. After discarding the aqueous phase, the gold ions were reduced in the presence of 100μ
    l dodecanethiol by 0.197g NaBH4 dissolved in 12.5ml pure water. After 12 hours,
    the organic phase was collected and the particle dispersion was washed with an excess of ethanol to remove all free thiol and reaction by-products. Size-selective
    precipitation using ethanol as the nonsolvent was used to further narrow the size distribution.
    [57] One-Dimentional Nanostructures: Synthesis, Characterization, and 115 APPlications**.
    By Younan Xia,* Peidong Yang,* Yugang Sun, Yiying Wu, Brian Mayers, Byron
    Gates, Yadong Yin, Franklin Kim, and Haoquan Yan. Adv. Mater. 2003, 15, No. 5,March 4
    [58] F. Kubel. H. Schmid. Structure of a Ferroelectric and Ferroelastic Monodomain Crystal of the Perovskite BiFeO3. Acta Cryst (1990). B46,698‐702.
    [59] J. B. Neaton,1,* C. Ederer,2 U. V. Waghmare,3 N. A. Spaldin,2 and K. M.Rabe1. First‐principles study of spontaneous polarization in multiferroic BiFeO3. PHYSICAL REVIEW B 71, 014113 s2005d
    [60] Kubel F, Schmid H.Acta Crystallographica 1990:B46:698‐702
    [61] Kalinin SV, Suchomel MR, Davies PK Bonnell DA. Journal of the American Ceramic Society 2002;85:3011‐7
    [62]Wang YP, Zhou L, Zhang MF, Chen XY, Liu JM, Liu ZG. Applied Physics Letters 2004;84:1731‐3
    [63] I. Szafaniak, M. Polomska, B. Hilczer, A. Pietraszko, L.Kepinski.Characterization of BiFeO3 nanopowder obtained by mechanochemical synthesis. Journal of European Ceramic Socirty 27 (2007)4399‐4402
    [64] Qing‐hui Jiang, Ce-wen Nan, Yao Wang, Yu-heng Liu, Zhi-jian Shen.Synthesis and properties of multiferroic BiFeO3 ceramics. J Electroceram DOI 10.1007/s10832-007-9265-5
    [65]M. Mahesh, Kumar and V. R. Palkar, K. Srinivas and S. V. Suryanarayana.Ferroelectricity in a pure BiFeO3 ceramic. Applied physics Letters Vol 76 Number 19 , 8 May 2000 116
    [66] Sushmita Ghosh, Subrata Dasgupta*, Amarnath Sen, Himadri Sekhar Maiti.Low temperature synthesis of bismuth ferrite nanoparticles by a ferrioxalate precursor method. Materials Research Bulletin 40 (2005) 2073-2079
    [67] Jong Kuk Kim, Sang Su Kim, Wong-Jeong Kim. Sol-gel synthesis and properties of multiferroic BiFeO3. Materials Letters 59 (2005) 4006-4009
    [68] Jie Wei, Desheng Xue. Low-temerature synthesis of BiFeO3 nanoparticles by ethylenediaminetetraacetic acid complexing sol-gel process. MRB-4096; No of Pages6
    [69] Nadini Das*, Ranabrata Majumdar, A. Sen, H.S. Maiti. Nanosized bismuth ferrite powder prepared through sonochemical and microemulsion techniques.Materials Letters 61 (2007) 2100-2104
    [70] Sushmia Ghosh, Subrata Dasgupta, Amarnath Sen, and Himadri Sekhar Maiti. Low‐Temperature Synthesis of Nanosized Bismuth Ferrite by Soft Chemical Route. J. Am. Ceram. Soc., 88[5] 1349‐1352 (2005)
    [71] http://nano.nchc.org.tw/ 奈米科學網
    [72] S. Hoshino, Y. Mitsui, F. Jona, and R. Pepinsky, “Dielectric and Thermal Study of Tri‐Glycine Sulfate and Tri‐Glycine Fluoberyllate”.Phys. Rev. B, 107,1255 (1957)
    [73] A. J. Moulson and J. M. Herbert, “Electroceramics, materials,properties and applications”, p52‐55 and p61‐62 (1990)
    [74] 吳朗,“電子陶瓷‐介電”, 全新資訊圖書 (1994)
    [75] A. J. Moulson and J. M. Herbert, “Electroceramics, materials,properties and applications”, p52‐55 and p61‐62 (1990)
    [76] 李雅明, “固態電子學”, 全華科技 (1995)
    [77] Nicola A. Hill, “Why are ther so few magnetic ferroelectrics?”, J.117 Phys. Chem. B, 104, 6694-6709 (2000)
    [78] J.B Goodenough. “Magnetism and the chemical bond”. Interscience Publishers, New York (1963)
    [79] Manfred Fiebig, “Revival of the magnetoelectric effect”, J.Phys.D:Appl.Phys.38 R123-152 (2005)
    [80] C. W. Nan, “ Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases”, Phys. Rev. B., 50 [9] 6082-6088(1994)
    [81] H. Zheng, J. Wang, “Multiferroic BaTiO3-CoFe2O4 nanostructures”,SCIENCE, 303 [5658] 661-663 (2004)
    [82] R. P. Mahajan, K. K. Patankar, “Dielectric properties and electrical conduction of nickel ferrite-barium titanate composites”, Indian J.PureAppl.
    Phys. 38[8] 615-620 (2000)
    [83] Ryu J, Priya S, Uchino K and Kim H E 2002, “Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials “, J.Electroceramics, 8, 107–119 (2002)
    [84] Kubel F and Schmid H , “STRUCTURE OF A FERROELECTRIC
    AND FERROELASTIC MONODOMAIN CRYSTAL OF THE
    PEROVSKITE BIFEO3,” Acta Crystallogr. B [46] 698 (1990)
    [85] Coeur´e P, Guinet F, Peuzin J C, Buisson G and Bertaut E F Proc.“International Meeting on Ferroelectricity” (Prague, 1966)
    (Prague:Institute of Physics of the Czechoslovak Academy of
    Sciences) (1966)
    [86] A. K. Pradhan, a’ Kai Zhang, D. Hunter, J. B. Dadson, and G. B.Loutts, “Magnetic and electrical properties of single-phase multiferroic BiFeO3”,J. Appl. Phys. 97, 093903 (2005)
    [87] I. Sosnowska, T. Peterlin-Neumaier, and E. Steichele, J. Phys. C 15,4835 (1982)118
    [88] Venevtsev Y N, Gagulin V V and Zhitomirsky I D, “MATERIAL SCIENCE ASPECTS OF SEIGNETTE-MAGNETISM PROBLEM,”Ferroelectrics 73 221-248 (1987)
    [89] Ascher E, Schmid H and Tar D, “Dielectric properties of boracites and evidence for ferroelectricity”, Solid State Commun. 2 45 (1964)
    [90] Schmid H, Rieder H and Ascher E, “Magnetic susceptibilities of some 3d transition metal boracites”, Solid State Commun. 3 327(1965)
    [91] Scott J F Ferroelectrics 24 127 (1980)
    [92] Eibsch”utz M and Guggenheim H J,
    “Antiferromagnetic-piezoelectric crystals: BaMe4 (M = Mn, Fe, Co and Ni),"Solid state Commun. 6 737 (1968)
    [93]Venevtsev Y N, Gagulin V V and Zhitomirsky I D Ferroelectrics 73 221(1987)
    [94]J.R.Teague, R.G.erson, and W.J.James,“Dielectric hysteresis in single crystal BiFeO3", Solid State Comm. 8 1073(1970)
    [95]M.M.Kumar, V.R.Palker, K.Srinivas, and S.V.Sueyanaryana,“Ferroelectric in pure BiFeO3 ceramic",Appl. Phys. Lett. 76,2764(2000)
    [96]J.F.Li, J. Wang, M. Wuttig, R. Ramesh, N. Wang, B. Ruette, A. P.Pyatakov,A. K. Zvezdin, and D. Viehland,“Dramatically enhanced polarization in (001),
    (101), and (111) BiFeO3 thin films due to epitiaxial-induced transitions", Appl.Phys. Lett. 76 2764 (2000)
    [97]I. Sosnowska, T. Peterlin-Neumaier, and E. Steichele, J. Phys. C 15,4835 (1982)
    [98] Kadomtseva, Yu. Popov, G. Vorob’ev, and A. Zvezdin,“Spin density wave and field induced phase transitions in magnetoelectric antiferromagnets",119 Physica B 211, 327 (1995).

    下載圖示 校內:2010-12-29公開
    校外:2010-12-29公開
    QR CODE