簡易檢索 / 詳目顯示

研究生: 鄭勝仁
Cheng, Sheng-Jen
論文名稱: 碳化溫度及銅纖維含量對銅/酚醛樹脂半金屬基磨擦材料機械及磨潤性質的影響
Effects of Carbonization Temperature and Copper Fiber Content on Mechanical and Tribological Properties of Copper/Phenolic Resin-based Semi-metallic Friction Material
指導教授: 陳瑾惠
Chern Lin, Jiin-Huey
朱建平
Ju, Chien-Ping
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 127
中文關鍵詞: 磨耗碳化磨擦材料
外文關鍵詞: wear, carbonization, friction material
相關次數: 點閱:129下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用酚醛樹脂、紅銅粉及紅銅纖維製作磨擦材料,藉由改變碳化溫度及銅粉與銅纖維的相對含量,探討纖維含量對銅/酚醛樹脂基半金屬磨擦材料機械及磨潤性質的影響。研究結果概述如下:
    實驗結果發現, 機械性質方面,抗壓強度及硬度隨著銅纖維含量增加而下降。
    磨潤性質方面,各類試片磨耗後的平均磨擦係數相距不大,約介於0.294與0.34之間,且碳化C2試片有最高的平均磨擦係數;各試片的磨擦溫度,隨著碳化溫度及銅纖維含量增加,各類試片磨擦溫度上升,且銅纖維含量影響較大。磨耗損失方面,隨著碳化溫度及銅纖維含量增加,磨耗損失降低。表面粗糙度方面,各類試片磨耗後的表面粗糙度會隨著碳化溫度及銅纖維含量增加而增加。
    再現性磨耗測試,可觀察出各類試片磨擦係數與磨擦次數維持穩定,且隨著碳化溫度增加及銅纖維含量減少,各類試片平均磨擦係數有增加之趨勢。磨耗損失方面,隨著碳化溫度降低及銅纖維含量增加,磨耗量有增加之趨勢。

    In this research, we used phenolic resin, copper powder, and copper fiber to manufacture friction material. By changing carbonization temperature and the relative content of copper powder and copper fiber, we understood the effects of carbonization temperature and copper fiber content on mechanical and tribological properties of copper/phenolic resin-based semi-metallic friction material. The results are as follows:
    The results of mechanical properties of materials show that compressive strength and hardness decrease with increasing carbonization temperature and fiber conten.
    Materials show little difference of average friction coefficient, about lying between 0.294 and 0.34, and carbonization C2 materials show the highest average friction coefficient. The friction temperature increases with increasing carbonization temperature and fiber content, but the fiber cotent shows large effective. Wear loss decrease when carbonization temperature and fiber content increases. Surface roughness increases with increasing carbonization temperature and fiber content.
    In repeatable wear test,it shows that all specimens of average friction coefficient be stable. The average friction coefficient increases when carbonization temperature increases and fiber content decreases. Wear loss decreases when carbonization temperature increases and fiber content decreases.

    摘 要 ……………………………………………………………..…………..I Abstract II 誌 謝 III 總 目 錄 …………………………………………………………….……..IV 表 目 錄 …………………………………………………………………...IX 圖 目 錄 …………………………………………………………………....X 第一章 前言………………………………………………………………….1 第二章 文獻回顧…………………………………………………………….3 2.1 磨擦材料簡介 3 2.1.1 磨擦材料之定義及原理 3 2.1.2 磨擦材料的應用 3 2.1.3 磨擦材料的分類 4 2.1.4 磨擦材料的技術要求 6 2.2 半金屬基磨擦材料的發展 9 2.3 半金屬基磨擦材料之組成物介紹 10 2.3.1 基材 10 2.3.2 纖維 13 2.3.3 固體潤滑劑(Solid lubricant) 16 2.3.4磨擦調整劑(Friction modifier) 17 2.4 半金屬基磨擦材料之製程介紹 18 2.4.1 熱壓 18 2.4.2 穩定化 18 2.4.3 碳化 19 2.5 磨潤學研究 19 2.5.1 磨潤學簡介 19 2.5.2 磨擦原理 19 2.5.3 影響磨擦性能的因素 20 2.5.4 磨耗機制[Bono et al., 2001, Stachowiak, 2005] 22 第三章 實驗方法 37 3.1 實驗原料 37 3.1.1 酚醛樹脂 37 3.1.2 紅銅粉 37 3.1.3 紅銅纖維 38 3.2 實驗製程 38 3.2.1 原料混合 38 3.2.2 熱壓成型 38 3.2.3 穩定化 39 3.2.4 碳化 (Carbonization) 39 3.2.5 磨床處理 39 3.2.6 抗壓試片製備 40 3.3 性質量測 40 3.3.1 厚度及重量變化量測 40 3.3.2 抗壓強度測試 41 3.3.3 硬度測試 41 3.3.4 磨耗測試 42 3.3.4.1磨耗測試條件 42 3.3.4.2 磨擦係數及溫度的量測 43 3.3.4.3磨耗量的量測 44 3.3.5 表面粗糙度量測 44 3.4 顯微結構分析 45 3.4.1 光學相機觀察 45 3.4.2 掃描式電子顯微鏡觀察(SEM)及波長散佈光譜儀(WDS)…….45 第四章 結果與討論 54 4.1 碳化溫度及纖維含量對厚度、重量、密度變化之影響 54 4.1.1 各類試片之厚度變化 54 4.1.2 各類試片之重量變化 55 4.1.3 各類試片之密度變化 56 4.2 碳化溫度及銅纖維含量對機械性質之影響 57 4.2.1 各類試片之抗壓強度 57 4.2.2 各類試片之硬度 58 4.3 碳化溫度及銅纖維含量對磨潤性質之影響 58 4.3.1 各類試片經6000 revs磨耗的磨擦曲線分布 58 4.3.2 碳化溫度對磨擦係數的影響 60 4.3.3 銅纖維含量對磨擦係數的影響(6000 rev) 61 4.3.4 磨耗試片溫度(6000 rev) 62 4.3.5 製程參數對磨耗損失的影響(6000 rev) 63 4.3.6 磨耗前後表面粗糙度(6000rev) 64 4.3.7 各類試片磨耗前後的表面型態(6000rev) 64 4.4 各類試片經6000 revs後再現性測試(磨耗10次1000 revs) 67 4.4.1 各類試片磨擦係數與磨擦次數關係 67 4.4.2 各類試片之平均磨擦係數 68 4.4.3 各類試片之磨耗量 68 4.4.4各類試片之表面粗糙度 69 4.4.5各類試片磨耗前後的表面型態 ………………………………………69 第五章 結論 119 第六章 參考文獻 121 表 目 錄 表2-1 CNS 2586規範中溫度及磨擦係數表 27 表2-2 CNS 8814規範中磨擦材料接著強度表 29 圖 目 錄 圖2-1 應用於煞車及離合器系統的磨擦材料 24 圖2-2 鼓式煞車磨擦[http://brake.xxking.com/a04_01.asp] 25 圖2-3 鼓式煞車示意圖[Limpert, 高維山譯, 2004] 25 圖2-4 碟式煞車示意[http://brake.xxking.com/a05_01.asp] 26 圖2-5 煞車片磨擦金屬底板示意圖 30 圖2-6 PTFE化學結構圖[Baer, 1991] 30 圖2-7 PEEK化學結構圖[Baer, 1991] 30 圖2-8 線性酚醛樹脂化學結構圖[Han et al., 1997] 31 圖2-9 環氧樹脂化學結構圖[馬振基,2006] 31 圖2-10 矽樹脂化學結構圖[馬振基,2006] 31 圖2-11 (a)石墨[Burchell, 1999]及(b)二硫化鉬[Dorinson and 32 圖2-12 酚醛樹脂的交聯反應[Yan et al.,2002] 33 圖2-13 (a)滾動磨擦與(b)滑動磨擦示意圖[Hutchings, 1992] 33 圖2-14 纖維排列方向示意圖[Zum Gahr, 1987] 34 圖2-15 磨耗機制示意圖[Bono et al., 2001] 35 圖3-1 實驗流程圖 46 圖3-2 熱壓模具示意圖 47 圖3-3 抗壓強度測試試片 48 圖3-4 桌上型萬能試驗機 48 圖3-5 洛氏硬度機 49 圖3-6 洛氏硬度測試用鋼球壓頭 49 圖3-7 磨耗試驗機外觀圖 50 圖3-8 磨耗試驗機示意圖[CNS-2586] 51 圖3-9 熱電偶位置示意圖 52 圖3-10 表面粗糙度(Ra)測試法示意圖[ASME B46] 53 圖4-1 各類試片在各製程階段的厚度值 71 圖4-2 各系列試片經不同碳化熱處理溫度後的厚度變化 71 圖4-3 各類試片在各製程階段的重量值 72 圖4-4 各系列試片經不同碳化熱處理溫度後的重量變化 72 圖4-5 各類試片在各製程階段的密度值 73 圖4-6 各系列試片經不同碳化熱處理溫度後的密度變化 73 圖4-7 各類試片的抗壓強度值 74 圖4-8 各類試片的硬度值 74 圖4-9 各類試片經6000 revs磨耗測試的磨擦曲線圖 75 圖4-10 各類試片經6000 revs磨耗測試具有代表性的磨擦曲線圖 78 圖4-11 各類試片經6000 revs磨耗測試後的平均磨擦係數值 81 圖4-12 各類試片經6000 revs磨耗測試過程之溫度曲線圖 82 圖4-13 各類試片經6000 revs磨耗測試的磨耗損失 83 圖4-14 各類試片經6000 revs磨耗測試的厚度損失 83 圖4-15 各類試片經6000 revs磨耗測試前後的表面粗糙度 84 圖4-16各類試片經6000 revs磨耗測試前後的光學表面型態照片 85 圖4-17 各類試片經6000 revs磨耗測試前後SEM表面型態照片 88 圖4-18 F3C2試片磨耗後孔洞SEM表面型態照片及元素分佈圖 91 圖4-19 F3C1試片磨耗後顆粒之SEM表面型態照片及元素分佈圖 92 圖4-20 F3C2試片磨耗前後SEM表面型態照片及元素分佈圖 93 圖4-21 F4C2試片磨耗前後SEM表面型態照片及元素分佈圖 94 圖4-22 F5C2試片磨耗前後SEM表面型態照片及元素分佈圖 95 圖4-23 F3C3試片磨耗前後SEM表面型態照片及元素分佈圖 96 圖4-24 F4C3試片磨耗前後SEM表面型態照片及元素分佈圖 97 圖4-25 F5C3試片磨耗前後SEM表面型態照片及元素分佈圖 98 圖4-26 F3C1試片磨擦係數與磨耗試驗次數關係圖 99 圖4-27 F3C2試片磨擦係數與磨耗試驗次數關係圖 99 圖4-28 F3C3試片磨擦係數與磨耗試驗次數關係圖 100 圖4-29 F4C1試片磨擦係數與磨耗試驗次數關係圖 100 圖4-30 F4C2試片磨擦係數與磨耗試驗次數關係圖 101 圖4-31 F4C3試片磨擦係數與磨耗試驗次數關係圖 101 圖4-32 F5C1試片磨擦係數與磨耗試驗次數關係圖 102 圖4-33 F5C2試片磨擦係數與磨耗試驗次數關係圖 102 圖4-34 F5C3試片磨擦係數與磨耗試驗次數關係圖 103 圖4-35 各類試片經10次1000 revs磨耗的平均磨擦係數圖 104 圖4-36各類試片經10次1000 revs磨耗測試的磨耗損失 105 圖4-37各類試片經10次1000 revs磨耗測試的厚度損失 106 圖4-38各類試片經10次1000 revs磨耗測試前後的表面粗糙度 106 圖4-39各類試片經10次1000 revs磨耗前後的光學表面型態照片 107 圖4-40各類試片經10次1000 revs磨耗前後的SEM表面型態照片 110 圖4-41 F3C2經10次1000 revs磨耗前後SEM照片及元素分佈圖 113 圖4-42 F4C2經10次1000 revs磨耗前後SEM照片及元素分佈圖 114 圖4-43 F5C2經10次1000 revs磨耗前後SEM照片及元素分佈圖 115 圖4-44 F3C3經10次1000 revs磨耗前後SEM照片及元素分佈圖 116 圖4-45 F4C3經10次1000 revs磨耗前後SEM照片及元素分佈圖 117 圖4-46 F5C3經10次1000 revs磨耗前後SEM照片及元素分佈圖 118

    ASME B46.1. Surface texture, surface roughness, waviness and lay
    ASTM D695-96. Standard test method for compressive properties of rigid plastics, 1996
    Bear E., Moet A., Aglan H., High performance polymers :structure, properties, composites, fibers, Oxford University Press, New York, p14-p16, 1991
    Bijwe J., Composites as friction materials: Recent developments in non-asbestos fiber reinforced friction materials - a review, Polymer Composites 18:378-396, 1997
    Bijwe J., Rattan R., Fahim M., Abrasive wear performance of carbon fabric reinforced polyetherimide composites: Influence of content and orientation of fabric, Tribology International 40:844-854, 2007
    Bono C.M., Levine R.G., Rao J.P. Behrens F.F., Nonarticular proximal tibia fractures: Treatment options and decision making, American Academy of Orthopaedic Surgeons 9:176-186, 2001
    Burchell T.D., Carbon materials for advanced technologies, Pergamon, New York, p434, 1999
    Burris D.L. and Sawyer W.G., A low friction and ultra low wear rate PEEK/PTFE composite, Wear 261:410-418, 2006
    Chang L., Zhang Z., Ye L., Friedrich K., Tribological properties of high temperature resistant polymer composites with fine particles, Tribology International 40:1170-1178, 2007

    Cho M.H., Ju J., Kim S.J., Jang H., Tribological properties of solid lubricants (graphite, Sb2S3, MoS2) for automotive brake friction materials, Wear 260:855-860, 2006
    Cho M.H., Kim S.J., Basch R.H., Fash J.W., Jang H., Tribological study of gray cast iron with automotive brake linings: The effect of rotor microstructure, Tribology International 36:537-545, 2003
    Chi-Yuan Huang,Wen-Wei Mo,Ming-Lin Roan, Studies on the influence of double-layer electroless metal deposition on the electromagnetic interference shielding effectiveness of carbon fiber / ABS composites, Surface and Coating Techology 184(2004) 163-169
    CNS 2114, Z8003. Method of Rockwell hardness test
    CNS 2472, G3038. Gray iron castings
    CNS 2586, D2002. Brake linings for automobiles
    CNS 7473, Z8022. Method of Rockwell superficial hardness test
    CNS 8813, D3122. Method of test for brake shoe assembly of motorcycles
    CNS 8814, D2129. Brake shoe assembly for motorcycles
    Dorinson A. and Ludema K. C., Mechanics and chemistry in lubrication, Elsevier Science Publishing, New York, p553, 1985
    Han S., Kim W.G., Yoon H.G., Moon T.J., Curing reaction of biphenyl epoxy resin with different phenolic functional hardeners, Journal of Polymer Science A: Polymer Chemistry 36:773-783, 1998
    Hayashi N., Matsui A., Takahashi S., Effect of surface topography on transferred film formation in plastic and metal sliding system, Wear 225-229:329-338, 1999

    Hutchings I.M., Tribology: Friction and wear of engineering materials, CRC, Boca Raton, 1992
    H. Jang , K. Ko, S.J. Kim, R.H. Basch , J.W. Fash ,The effect of metal fibers on the friction performance of automotive brake friction materials,Wear 256 (2004) 406–414
    Jacko M.G., Rhee S.K., Brake linings and clutch facings. In Grayson M., editor. Encyclopedia of composite materials and components, Wiley: 144-154, 1983
    Jang H., Ko K., Kim S.J., Basch R.H., Fash J.W., The effect of metal fibers on the friction performance of automotive brake friction materials, Wear 256:406-414, 2004
    Kim S.J. and Jang H., Friction and wear of friction materials containing two different phenolic resins reinforced with aramid pulp, Tribology International 33:477-484, 2000
    Kim S.J., Cho M.H., Lim D.-S., Jang H., Synergistic effects of aramid pulp and potassium titanate whiskers in the automotive friction material, Wear 251:1484-1491, 2001
    Kim S.J., Cho M.H., Cho K.H., Jang H., Complementary effects of solid lubricants in the automotive brake lining, Tribology International 40:15-20, 2007
    Kishore, Sampathkumaran P., Seetharamu S., Thomas P., Janardhana M., A study on the effect of the type and content of filler in epoxy-glass composite system on the friction and slide wear characteristics, Wear 259:634-641, 2005
    Kurt A. and Boz M., Wear behavior of organic asbestos based and bronze based powder metal brake linings, Materials and Design 26:717-721, 2005
    K.M.Shorowordi,A.S.M.A.Haseeb,J.P.Celis, Velocity effects on
    the wear,friction and tribochemistry of aluminum MMC sliding against phenolic brake pad,Wear256(2004)1176-1181
    K.W. Hee, P. Filip, Performance of ceramic enhanced phenolic matrix brake lining materials for automotive brake linings, Wear 259 (2005) 1088–1096
    Lee H.G., Hwang H.Y., Lee D.G., Effect of wear debris on the tribological characteristics of carbon fiber epoxy composites, Wear 261:453-459, 2006
    Louis B.Newman,F, Friction Materials Recent Advances
    Mandal D., Dutta B.K., Panigrahi S.C., Wear and friction of stir cast aluminum-base short steel fiber reinforced composites, Wear 257:654-664, 2004
    Mutlu I., Oner C., Findik F., Boric acid effect in phenolic composites on tribological properties in brake linings, Materials and Design 28:480-487, 2007
    Min Hyung Cho, Seong Jin Kim, Daehwan Kim, Ho Jang,Effects of ingredients on tribological characteristics of a brake lining: an experimental case study,Wear 258 (2005) 1682–1687
    Ozturk B., Arslan F., Ozturk S., Hot wear properties of ceramic and basalt fiber reinforced hybrid friction materials, Tribology International 40:37-48, 2007

    Shorowordi K.M., Haseeb A.S.M.A., Celis J.P., Velocity effects on the wear, friction and tribochemistry of aluminum MMC sliding against phenolic brake pad, Wear 256:1176-1181, 2004
    Shorowordi K.M., Haseeb A.S.M.A., Celis J.P., Tribo-surface characteristics of Al-B4C and Al-SiC composites worn under different contact pressures, Wear 261:634-641, 2006
    Stachowiak G.W., Wear:materials, mechanisms, and practice, Wiley, Chichester, p12, 2005
    Seong Jin Kim, Ho Jang,Friction and wear of friction materials containing two different phenolic resins reinforced with aramid pulp,Tribology International 33 (2000) 477–484
    Shaoyang Zhang,Fuping Wang,Comparison of friction and wear performances of brake material dry sliding against two aluminum matrix composites reinforced with differnt SiC particles,Journal of Materials Processing Technology 182(2007)122-127
    Shinn-Shyong Tzeng,Fa-Yen Chang,Electrical resistivity of electroless nickel coated carbon fibers,Thin Solid Films 388 (2001) 143-149
    Shinn-Shyong Tzeng,Fa-Yen Chang,EMI shielding effectiveness of metal-coated carbon fiber-reinforced ABS composites,Materials science and Engineering A302(2001)258-267

    S.J. Kim, M.H. Cho, D.-S. Lim, H. Jang, Synergistic effects of aramid pulp and potassium titanate whiskers in the automotive friction material, Wear 251 (2001) 1484–1491
    V.A.Bely,A.I.Sviridenok,M.I.Petrokovets,V.G.Savkin, Friction and wear in polymer-based materials
    Wu J.Y., Zhou Y.C., Wang J.Y., Tribological behavior of Ti2SnC particulate reinforced copper matrix composites, Materials Science and Engineering A 422:266-271, 2006
    Eovolak and bismaleimide for resin-transfer molding, J Appl Polym Sci(83):1651-1657, 2002
    Xiang Xiong , Jie Chen, Pingping Yao, Shipeng Li, Baiyun Huang, Friction and wear behaviors and mechanisms of Fe and SiO2 in Cu-based P/M friction materials, Wear 262 (2007) 1182–1186
    Yi G. and Yan F., Mechanical and tribological properties of phenolic resin-based friction composites filled with several inorganic fillers, Wear 262:121-129, 2007
    Yuji H. and Takahisa K., Effects of Cu powder, BaSO4 and cashew dust on the wear and friction characteristics of automotive brake pads, Tribology Transactions 39(2):346-353, 1996
    Y.S. Zhang, Z. Han, K. Wang, K. Lu, Friction and wear behaviors of nanocrystalline surface layer of pure copper, Wear 260 (2006) 942–948
    Zum Gahr K.H., Microstructure and wear of materials, Elsevier, New York, 1987.

    Limpert, 高維山譯,煞車系統設計及安全性,科技圖書,台北市,民國93年
    馬振基,高分子複合材料,國立編譯館,台北市,民國95年
    李育德,高分子導論,黎明書店,新竹,民國76年
    何淑靜,銅/酚醛樹脂基半金屬磨擦材料磨潤性質研究,國立成功大學材料科學及工程學系,台南市,民國93年
    許明發,郭文雄,熱塑性複合材料,黎明書店,新竹,民國93年
    行政院勞工委員會勞工安全衛生研究所,煞車來令業勞工石棉暴露防治研究,台北,民國85年
    陽春欽,磨潤學原理與應用,科技圖書股份有限公司,台北市,民國75年
    曲在綱,黃月初,粉末冶金摩擦材料
    周森,複合材料-奈米‧生物科技,全威圖書有限公司

    無法下載圖示 校內:2107-08-01公開
    校外:2107-08-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE