簡易檢索 / 詳目顯示

研究生: 蕭宇壕
Hsiao, Yu-Hao
論文名稱: 生醫阻抗訊號前處理晶片應用於人類尿液中離子之研究
Study of Ion in Human Urine Sample by using Biomedical Impedance Pretreatment Chips
指導教授: 林裕城
Lin, Yu-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 108
中文關鍵詞: 微機電製程技術交流電阻抗分析法尿液前處理田口方法
外文關鍵詞: Fabrication technology for MEMS, Alternative Current Impedance Spectroscopy, Urine pretreatment, Taguchi methods
相關次數: 點閱:87下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究成功利用微機電製程技術開發出尿液檢體前處理晶片,以降低尿液中離子雜訊干擾,並配合微型幫浦來發展出可攜式之尿液檢體前處理系統平台。
    研究方向是利用電吸附原理進行離子吸附,降低尿液中之離子濃度;前處理晶片設計方面,下層ITO電極晶片與中間層PDMS微流道透過表面改質後,使兩者緊密結合,並於上層使用PMMA與雙面黏性材料做為封裝層,並在前處理晶片後端設計ㄧ對感測電極,以量測尿液之阻抗値變化,再透過微型幫浦做為尿液檢體於晶片內之驅動力來源,即完成尿液前處理晶片,適合短時間操作以及小量批次處理之用。
    研究中,使用田口方法進行前處理晶片效能最佳化實驗,以不同前處理電壓(0.2V、0.5V及0.8V)、不同前處理時間(2 min、5min及10 min)、不同ITO薄膜面積(42 mm2、56 mm2及70 mm2)及不同交流電掃頻頻率(100k Hz、125k Hz及150k Hz)進行PBS溶液阻抗變化之探討。經由實驗結果發現,在處理電壓0.8V、處理時間10 min、ITO薄膜面積70 mm2及頻率125k下,PBS溶液阻抗變化率可提高12.5%,品質損失降低5.5%;並使用人工尿液進行驗證實驗,其阻抗提升率達到11.47%,由此可知本研究所開發之前處理晶片適用於臨床檢測上進行尿液前處理之功用。 
    最後,本研究成功結合微機電製程技術與生物電阻抗分析技術來完成可拋棄式尿液前處理晶片,晶片尺寸為76 mm × 26 mm × 5 mm,並結合微型幫浦以驅動尿液檢體於晶片中之動力來源,開發出ㄧ簡易平台。

    This thesis presents the key factors reducing the concentration of ions in the human urine, and improving the interference of application for bio-electrical impedance analysis (BIA). The combination with urine pretreatment chips and alternative current impedance spectroscopy (ACIS) by instrument of LCR meter were successfully proved that using pretreatment chips is useful to reducing the concentration of ions in the urine. For Taguchi method, when we used 0.8 V voltage, 10 minute reaction time, 70 millimeter square of reaction area, 125k measuring frequency, the impedance increasing efficiency can be increased by 12.5%, and S/N ratio increased to 24.33 dB. After optimization, we used blank urine to verify the clinical function of sample pretreatment chips, the impedance increasing efficiency of urine increased 11.47%, and standard deviation (SD) was 0.66, and coefficient of variation (CV) was 5.73%.

    摘要 I EXTENDED ABSTRACT III 誌謝 VIII 縮寫表 IX 目錄 XI 圖目錄 XVI 表目錄 XX 第一章 緒論 1 1-1 研究背景 1 1-2 生物電阻抗分析技術 3 1-3 文獻回顧 4 1-3-1 人類尿液的組成 4 1-3-2 微機電系統技術與微流體晶片 5 1-3-3 微流體晶片之製程技術 7 1-3-4 電吸附原理 12 1-3-5 電吸附法發展 15 1-3-6 交流阻抗分析法簡介 21 1-3-7 田口方法簡介 22 1-4 研究動機與目的 23 1-5 研究架構 24 第二章 尿液前處理晶片之設計與製作 26 2-1 尿液前處理晶片之設計與結構 26 2-1-1 電極晶片光罩設計 26 2-1-2 尿液前處理晶片結構 27 2-2 ITO電極晶片製程 29 2-2-1 ITO玻璃基材清洗 30 2-2-2 微影(Lithography) 31 2-2-3 電極晶片蝕刻 35 2-3 PDMS微流道設計與製作 37 2-3-1微流道模具設計與製作 37 2-3-2 PDMS灌注成形與翻模製程 39 2-4 前處理晶片接合技術與組裝 42 2-5 交流阻抗分析法應用於前處理晶片 45 2-5-1交流阻抗分析法原理 45 2-5-2交流阻抗分析法之理論推導 47 2-6 完成尿液前處理系統平台 50 第三章 實驗與研究方法 54 3-1 實驗儀器與設備 54 3-1-1 倒立式螢光光學顯微鏡 54 3-1-2 真空抽氣系統 55 3-1-3 氧電漿轟擊系統 56 3-1-4 直流電源供應器 57 3-1-5 LCR 高精度量測儀 58 3-1-6 二氧化碳雷射雕刻機 59 3-1-7 微型幫浦 60 3-1-8 可即時計算阻抗值與相位之基頻電路 61 3-2 實驗藥品 62 3-3 實驗方法 63 3-3-1 微機電製程技術參數實驗 63 3-3-2 等效電路模型驗證實驗 64 3-3-3 微型幫浦頻率與流量量測實驗 65 3-3-4 田口方法應用於前處理晶片效能實驗 66 3-3-4-1理想機能與S/N比 67 3-3-4-2實驗的控制因子 68 3-3-4-3直交表 69 3-3-5 前處理晶片應用於尿液檢體實驗 70 3-3-6 應用阻抗與相位之基頻電路於前處理晶片量測實驗 71 第四章 結果與討論 72 4-1 微機電製程參數之實驗結果 72 4-1-1 顯影時間與線寬分析 72 4-1-2 蝕刻時間與線寬分析 73 4-2 等效阻抗電路驗證實驗之結果 74 4-3 微型幫浦之輸出頻率與流量量測之結果 81 4-3-1 NE555理論頻率與實際輸出頻率之結果 81 4-3-2微型幫浦頻率與輸出流速之結果 83 4-4 前處理晶片效能最佳化分析 84 4-4-1 前處理晶片效能控制因子及水準 84 4-4-2 L9(34)直交表 86 4-4-3 品質特性與S/N比因子反應分析 87 4-4-4 S/N比與品質特性變異分析 90 4-4-5 品質特性與S/N比因子反應之信賴界限 92 4-4-6 預測值與確認實驗 94 4-4-7 品質損失計算 96 4-5 前處理晶片應用於尿液檢體之結果 97 4-6 應用阻抗與相位之基頻電路於前處理晶片量測結果 99 第五章 結論與建議 100 5-1 結論 100 5-2 建議 102 參考文獻 103

    [1]J. B. Lee, J. English, C. H. Ahn, and M. G. Allen, “Planarization techniques for vertically integrated metallic MEMS on silicon foundry circuits,” Journal of Micromechanics and Microengineering, 7, pp. 44-54, 1997.
    [2]A. C. R. Grayson, R. S. Shawgo, A. M. Johnson, N. T. Flynn, Y. W. Li, M. J. Cima, and R. Langer, “A BioMEMS review: MEMS technology for physiologically integrated devices,” Proceedings of the IEEE, 92, pp. 6-21, 2004.
    [3]R. F. Kushner and D. A. Schoeller, “Estimation of total body water by bioelectrical impedance analysis,” American Journal of Clinical Nutrition, 44, pp. 417-424, 1986.
    [4]K. Seiler, D.J. Harrison and A. Manz, “Planar chips technology for miniaturization and integration of separation techniques into monition systems,” Journal of Chromatography, 593, pp. 253-258, 1992.
    [5]Y.N. Xia and G.M. Whitesides, “Soft lithography,” Angewandte Chemie-International Edition, 37, pp. 551-575, 1998.
    [6]D. Snakenborg, H. Klank, and J. P. Kutter, “Microstructure fabrication with a CO2 laser system,” Journal of Micromechanics and Microengineering, 14, pp. 182-189, 2004.
    [7]K. S. Huang, T. H. Lai, and Y. C. Lin, “Manipulating the Generation of Ca-alginate Microspheres using Microfluidic Channels as a Carrier of Gold Nanoparticles,” Lab on a Chip, 6, pp. 954-957, 2006.
    [8]K.S. Huang, T.H. Lai, and Y. C. Lin, “Using a Microfluidic Chip and Internal Gelation Reaction for Monodisperse Calcium Alginate Microparticles Generation,” Frontiers in Bioscience, 12, pp. 3061-3067, 2006.
    [9]L. Martynova, L.E. Locascio, M. Gaitan, G.W. Kramer, R.G. Christensen, and W.A. MacCrehan, “Fabrication of plastic microfluid channels by imprinting methods,” Analytical Chemistry, 69, pp. 4783-4789, 1997.
    [10]H. Becker and U. Heim, “Polymer hot embossing with silicon master structures,” Sensors and Materials, 11, pp. 297-304, 1999.
    [11]M. Heckele, W. Bacher, and K.D. Muller, “Hot embossing - The molding technique for plastic microstructures,” Microsystem Technologies, 4, pp. 122-124, 1998.
    [12]H. Becker and U. Heim, “Hot embossing as a method for the fabrication of polymer high aspect ratio structures,” Sensors and Actuators A: Physical, 83, pp. 130-135, 2000.
    [13]R. M. McCormick, R. J. Nelson, M. G. AlonsoAmigo, J. Benvegnu, and H. H. Hooper, “Microchannel electrophoretic separations of DNA in injection-molded plastic substrates,” Analytical Chemistry, 69, pp. 2626-2630, 1997.
    [14]Fischer, V Marco, In situ electrochemical regeneration of activated carbon, University of Groningen, Groningen.
    [15]A. Ban, A. Schafer, and H. Wendt, “Fundamentals of electrosorption on activated carbon for wastewater treatment of industrial effluents,” Journal of Applied Electrochemistry, 28, pp. 227-236, 1998.
    [16]Lippmann, “Relations entre les phénomènes électriques et capillaires”, Thèse: Sciences physiques: Paris: 1875.
    [17]M. Gouy, Annales de Chimie – Physique, 7, pp. 145-150, 1903.
    [18]J. Bockris, E. Gileadi, and K. Muller, “A molecular theory of charge dependence of competitive adsorption,” Electrochimica Acta, 12(9), pp. 1301-1321, 1967.
    [19]R. H. Perry, D. W. Green, and J. O. Maloney, Perry's chemical engineers' handbook, New York, McGraw-Hill , 1997.
    [20]F. Posey and T. Morozumi, “Theory of potentiostatic and galvanostatic charging of double layer in porous electrodes,” Journal of the Electrochemical Society, 113(2), pp. 176-184, 1966.
    [21]R. S. Eisinger, and G. E. Keller, “Electrosorption: A Case Study on Removal of Dilute Organics from Water,” Environmental Progress, 9(4), pp. 235-244, 1990.
    [22]C. C. Huang and Y. J. Su, “Removal of copper ions from wastewater by adsorption/electrosorption on modified activated carbon cloths,” Journal of Hazardous Materials, 175, pp. 477-483, 2009.
    [23]M. Łukaszewski, K. Kuśmierczyk, J. Kotowski, H. Siwek and A. Czerwiński, “Electrosorption of hydrogen into palladium-gold alloys,” Journal of Solid State Electrochemistry, 7, pp. 69-76, 2002.
    [24]J. C. Farmer, D. V. Fix, G. V. Mack, R. W. Pekala and J. F. Poco, “Capacitive deionization of NH4ClO4 solutions with carbon aerogel electrodes,” Journal of Applied Electrochemistry, 26, pp. 1007-1018, 1996.
    [25]H. Li, T. Lu, L. Pan, Y. Zhang and Z. Sun “Electrosorption behavior of graphene in NaCl solutions,” Journal of Materials Chemistry, 19, pp. 6773–6779, 2009.
    [26]Z. Chen, C. Song, X. Sun, H. Guo and G. Zhu, “Kinetic and isotherm studies on the electrosorption of NaCl from aqueous solutions by activated carbon electrodes,” Desalination, 267, pp. 239-243, 2011.
    [27]J. L. Rosa, A. Robin, M. B. Silva, C. A. Baldan and M. P. Peres, “Electrodeposition of copper on titanium wires: Taguchi experimental design approach,” Journal of Materials Processing Technology, 209, pp. 1181-1188, 2009.
    [28]R. S. Rao, R. S. Parkasham, K. K. Prasad, S. Rajesham, P. N. Sama and L. V. Rao, “Xylitol production by Candida sp.: parameter optimization using Taguchi approach,” Process Biochemistry, 39, pp. 951-956, 2004.
    [29]H. Hillebrandt, G. Wiegand, M. Tanaka and E. Sackmann, “High Electric Resistance Polymer/Lipid Composite Films on Indium-Tin-Oxide Electrodes,” Langmuir, 15, pp. 8451-8459 , 1999.
    [30]http://microchem.com/PDFs_Dow/S1800.pdf
    [31]M. J. Owen and P. J. Smith, “Plasma treatment of polydimethylsiloxane,” Journal of Adhesion Science and Technology, 8, pp. 1063-1075, 1994.
    [32]陳春吉,自主性單層薄膜電極之阻抗分析與其在內毒素檢測上之應用,國立成功大學醫學工程研究所碩士論文,民國九十ㄧ年。
    [33]Eden, [電子電路] NE555 IC 介紹,教你看懂DATASHEET, [Online].Avail-able: http://did.idv.tw/wordpress/?p=1106
    [34]http://www.microjet.com.tw/zh-tw/
    [35]J. H. Kim, C. J. Kang, and Y. S. Kim, “Development of a microfabricated disposable microchip with a capillary electrophoresis and integrated three-electrode electrochemical detection”, Biosensors and Bioelectronics, 20(11), pp, 2314-2317, 2005.
    [36]謝秀春,氧化銦鋅透明導電薄膜之熱穩定性,國立清華大學材料工程學系碩士論文,民國九十年。
    [37]吳浩青,電化學動力學,九樺出版社,2001。
    [38]李輝煌,田口方法:品質設計的原理與實務(第四版),高立圖書有限公司,2017。

    無法下載圖示 校內:2024-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE