| 研究生: |
蕭宇壕 Hsiao, Yu-Hao |
|---|---|
| 論文名稱: |
生醫阻抗訊號前處理晶片應用於人類尿液中離子之研究 Study of Ion in Human Urine Sample by using Biomedical Impedance Pretreatment Chips |
| 指導教授: |
林裕城
Lin, Yu-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 微機電製程技術 、交流電阻抗分析法 、尿液前處理 、田口方法 |
| 外文關鍵詞: | Fabrication technology for MEMS, Alternative Current Impedance Spectroscopy, Urine pretreatment, Taguchi methods |
| 相關次數: | 點閱:87 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究成功利用微機電製程技術開發出尿液檢體前處理晶片,以降低尿液中離子雜訊干擾,並配合微型幫浦來發展出可攜式之尿液檢體前處理系統平台。
研究方向是利用電吸附原理進行離子吸附,降低尿液中之離子濃度;前處理晶片設計方面,下層ITO電極晶片與中間層PDMS微流道透過表面改質後,使兩者緊密結合,並於上層使用PMMA與雙面黏性材料做為封裝層,並在前處理晶片後端設計ㄧ對感測電極,以量測尿液之阻抗値變化,再透過微型幫浦做為尿液檢體於晶片內之驅動力來源,即完成尿液前處理晶片,適合短時間操作以及小量批次處理之用。
研究中,使用田口方法進行前處理晶片效能最佳化實驗,以不同前處理電壓(0.2V、0.5V及0.8V)、不同前處理時間(2 min、5min及10 min)、不同ITO薄膜面積(42 mm2、56 mm2及70 mm2)及不同交流電掃頻頻率(100k Hz、125k Hz及150k Hz)進行PBS溶液阻抗變化之探討。經由實驗結果發現,在處理電壓0.8V、處理時間10 min、ITO薄膜面積70 mm2及頻率125k下,PBS溶液阻抗變化率可提高12.5%,品質損失降低5.5%;並使用人工尿液進行驗證實驗,其阻抗提升率達到11.47%,由此可知本研究所開發之前處理晶片適用於臨床檢測上進行尿液前處理之功用。
最後,本研究成功結合微機電製程技術與生物電阻抗分析技術來完成可拋棄式尿液前處理晶片,晶片尺寸為76 mm × 26 mm × 5 mm,並結合微型幫浦以驅動尿液檢體於晶片中之動力來源,開發出ㄧ簡易平台。
This thesis presents the key factors reducing the concentration of ions in the human urine, and improving the interference of application for bio-electrical impedance analysis (BIA). The combination with urine pretreatment chips and alternative current impedance spectroscopy (ACIS) by instrument of LCR meter were successfully proved that using pretreatment chips is useful to reducing the concentration of ions in the urine. For Taguchi method, when we used 0.8 V voltage, 10 minute reaction time, 70 millimeter square of reaction area, 125k measuring frequency, the impedance increasing efficiency can be increased by 12.5%, and S/N ratio increased to 24.33 dB. After optimization, we used blank urine to verify the clinical function of sample pretreatment chips, the impedance increasing efficiency of urine increased 11.47%, and standard deviation (SD) was 0.66, and coefficient of variation (CV) was 5.73%.
[1]J. B. Lee, J. English, C. H. Ahn, and M. G. Allen, “Planarization techniques for vertically integrated metallic MEMS on silicon foundry circuits,” Journal of Micromechanics and Microengineering, 7, pp. 44-54, 1997.
[2]A. C. R. Grayson, R. S. Shawgo, A. M. Johnson, N. T. Flynn, Y. W. Li, M. J. Cima, and R. Langer, “A BioMEMS review: MEMS technology for physiologically integrated devices,” Proceedings of the IEEE, 92, pp. 6-21, 2004.
[3]R. F. Kushner and D. A. Schoeller, “Estimation of total body water by bioelectrical impedance analysis,” American Journal of Clinical Nutrition, 44, pp. 417-424, 1986.
[4]K. Seiler, D.J. Harrison and A. Manz, “Planar chips technology for miniaturization and integration of separation techniques into monition systems,” Journal of Chromatography, 593, pp. 253-258, 1992.
[5]Y.N. Xia and G.M. Whitesides, “Soft lithography,” Angewandte Chemie-International Edition, 37, pp. 551-575, 1998.
[6]D. Snakenborg, H. Klank, and J. P. Kutter, “Microstructure fabrication with a CO2 laser system,” Journal of Micromechanics and Microengineering, 14, pp. 182-189, 2004.
[7]K. S. Huang, T. H. Lai, and Y. C. Lin, “Manipulating the Generation of Ca-alginate Microspheres using Microfluidic Channels as a Carrier of Gold Nanoparticles,” Lab on a Chip, 6, pp. 954-957, 2006.
[8]K.S. Huang, T.H. Lai, and Y. C. Lin, “Using a Microfluidic Chip and Internal Gelation Reaction for Monodisperse Calcium Alginate Microparticles Generation,” Frontiers in Bioscience, 12, pp. 3061-3067, 2006.
[9]L. Martynova, L.E. Locascio, M. Gaitan, G.W. Kramer, R.G. Christensen, and W.A. MacCrehan, “Fabrication of plastic microfluid channels by imprinting methods,” Analytical Chemistry, 69, pp. 4783-4789, 1997.
[10]H. Becker and U. Heim, “Polymer hot embossing with silicon master structures,” Sensors and Materials, 11, pp. 297-304, 1999.
[11]M. Heckele, W. Bacher, and K.D. Muller, “Hot embossing - The molding technique for plastic microstructures,” Microsystem Technologies, 4, pp. 122-124, 1998.
[12]H. Becker and U. Heim, “Hot embossing as a method for the fabrication of polymer high aspect ratio structures,” Sensors and Actuators A: Physical, 83, pp. 130-135, 2000.
[13]R. M. McCormick, R. J. Nelson, M. G. AlonsoAmigo, J. Benvegnu, and H. H. Hooper, “Microchannel electrophoretic separations of DNA in injection-molded plastic substrates,” Analytical Chemistry, 69, pp. 2626-2630, 1997.
[14]Fischer, V Marco, In situ electrochemical regeneration of activated carbon, University of Groningen, Groningen.
[15]A. Ban, A. Schafer, and H. Wendt, “Fundamentals of electrosorption on activated carbon for wastewater treatment of industrial effluents,” Journal of Applied Electrochemistry, 28, pp. 227-236, 1998.
[16]Lippmann, “Relations entre les phénomènes électriques et capillaires”, Thèse: Sciences physiques: Paris: 1875.
[17]M. Gouy, Annales de Chimie – Physique, 7, pp. 145-150, 1903.
[18]J. Bockris, E. Gileadi, and K. Muller, “A molecular theory of charge dependence of competitive adsorption,” Electrochimica Acta, 12(9), pp. 1301-1321, 1967.
[19]R. H. Perry, D. W. Green, and J. O. Maloney, Perry's chemical engineers' handbook, New York, McGraw-Hill , 1997.
[20]F. Posey and T. Morozumi, “Theory of potentiostatic and galvanostatic charging of double layer in porous electrodes,” Journal of the Electrochemical Society, 113(2), pp. 176-184, 1966.
[21]R. S. Eisinger, and G. E. Keller, “Electrosorption: A Case Study on Removal of Dilute Organics from Water,” Environmental Progress, 9(4), pp. 235-244, 1990.
[22]C. C. Huang and Y. J. Su, “Removal of copper ions from wastewater by adsorption/electrosorption on modified activated carbon cloths,” Journal of Hazardous Materials, 175, pp. 477-483, 2009.
[23]M. Łukaszewski, K. Kuśmierczyk, J. Kotowski, H. Siwek and A. Czerwiński, “Electrosorption of hydrogen into palladium-gold alloys,” Journal of Solid State Electrochemistry, 7, pp. 69-76, 2002.
[24]J. C. Farmer, D. V. Fix, G. V. Mack, R. W. Pekala and J. F. Poco, “Capacitive deionization of NH4ClO4 solutions with carbon aerogel electrodes,” Journal of Applied Electrochemistry, 26, pp. 1007-1018, 1996.
[25]H. Li, T. Lu, L. Pan, Y. Zhang and Z. Sun “Electrosorption behavior of graphene in NaCl solutions,” Journal of Materials Chemistry, 19, pp. 6773–6779, 2009.
[26]Z. Chen, C. Song, X. Sun, H. Guo and G. Zhu, “Kinetic and isotherm studies on the electrosorption of NaCl from aqueous solutions by activated carbon electrodes,” Desalination, 267, pp. 239-243, 2011.
[27]J. L. Rosa, A. Robin, M. B. Silva, C. A. Baldan and M. P. Peres, “Electrodeposition of copper on titanium wires: Taguchi experimental design approach,” Journal of Materials Processing Technology, 209, pp. 1181-1188, 2009.
[28]R. S. Rao, R. S. Parkasham, K. K. Prasad, S. Rajesham, P. N. Sama and L. V. Rao, “Xylitol production by Candida sp.: parameter optimization using Taguchi approach,” Process Biochemistry, 39, pp. 951-956, 2004.
[29]H. Hillebrandt, G. Wiegand, M. Tanaka and E. Sackmann, “High Electric Resistance Polymer/Lipid Composite Films on Indium-Tin-Oxide Electrodes,” Langmuir, 15, pp. 8451-8459 , 1999.
[30]http://microchem.com/PDFs_Dow/S1800.pdf
[31]M. J. Owen and P. J. Smith, “Plasma treatment of polydimethylsiloxane,” Journal of Adhesion Science and Technology, 8, pp. 1063-1075, 1994.
[32]陳春吉,自主性單層薄膜電極之阻抗分析與其在內毒素檢測上之應用,國立成功大學醫學工程研究所碩士論文,民國九十ㄧ年。
[33]Eden, [電子電路] NE555 IC 介紹,教你看懂DATASHEET, [Online].Avail-able: http://did.idv.tw/wordpress/?p=1106
[34]http://www.microjet.com.tw/zh-tw/
[35]J. H. Kim, C. J. Kang, and Y. S. Kim, “Development of a microfabricated disposable microchip with a capillary electrophoresis and integrated three-electrode electrochemical detection”, Biosensors and Bioelectronics, 20(11), pp, 2314-2317, 2005.
[36]謝秀春,氧化銦鋅透明導電薄膜之熱穩定性,國立清華大學材料工程學系碩士論文,民國九十年。
[37]吳浩青,電化學動力學,九樺出版社,2001。
[38]李輝煌,田口方法:品質設計的原理與實務(第四版),高立圖書有限公司,2017。
校內:2024-01-01公開