簡易檢索 / 詳目顯示

研究生: 莫鈞維
Mo, Chun-Wei
論文名稱: 利用氣壓與震盪水柱轉換波浪能量方法之研究
The Study of Converted Wave Energy by Using Air Pressure and Oscillating Water Column
指導教授: 陳世雄
Chen, Shih-Hsiung
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 102
中文關鍵詞: 波浪能震盪水柱型波浪發電發電水槽水力發電
外文關鍵詞: ocean wave energy, oscillating water column (OWC), generator sink, hydro turbine
相關次數: 點閱:144下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目的為設計一波浪發電系統來獲得海洋能。震盪水柱型波浪發電方法是一種受地形影響較低且較容易設計的發電方式,但其以波浪帶動空氣發電的方法造成能量密度損失導致發電量下降。本實驗則設計了能夠改善此情況的發電系統,並驗證以氣壓改變帶動水位變化,再利用水的能量變化以推動水輪發電機的發電方式之可行性。實驗設備為震盪水柱型波浪發電系統,於共振箱末端連結一發電水槽,共振箱與發電水槽間為封閉空間,故震盪水柱的高低產生變化將會改變內部空氣壓力的變化,內部空氣壓力則會改變發電水槽內的水位變化,實驗中為了簡化實驗機構,本實驗並無安裝發電機,而是藉由量測共振箱壁面波高變化、內部空氣壓力變化及發電水槽水位變化,以分析在不同條件下的波浪所產生的最大可能發電量。本實驗使用的造浪池其造浪的參數為環境水深、造浪板幅度與擺動頻率。實驗結果為在造浪板擺幅為0.2公尺、0.3公尺、0.4公尺,波浪週期為1.5秒至3.4秒之間,發電水槽水位的波高約為原入射波分別為: 19%至68%之間、30%至61%之間、19%至68%之間,且發電水槽的最大可能發電量皆明顯高於若在共振箱末端裝置風力發電機的最大可能發電量。

    The purpose of this study is to design a wave-energy device to convert wave energy. Oscillating water column type of wave-energy device has a good adaptation for different topographies, and it is easy to design. Due to the loss of energy density, the method of generating power by using oscillating water column to push air would lower the output. In this experiment, a wave nergy device is designed to improve the power generating system. Also, it verifies the feasibility of using air pressure to generate oscillating water column in order to create the difference in the water level that can produce energy to push the water turbine. The device of the experiment is an oscillating water column type of energy device that its air chamber part is connected to a generator-sink. Therefore, the generator-sink and air chamber become an enclosed space. In this way, the oscillating water column changes the air pressure in the air chamber, and the inside air pressure changes the water level in the generator sink. To simplify the mechanism of this experiment, no turbine is installed on the wave-energy device. We can get the maximum potential energy by measuring the wave height on the air chamber wall, the air pressure between the air chamber and the generator sink, and the change of water level in the generator sink. The parameters of the wavemaker in this experiment are the local water depth, the stroke , and the frequency of paddle. The stroke of paddle is 0.2m, 0.3m, and 0.4m. The wave period is in the range of 1.5s to 3.4s. The ratio of the wave height in the generator sink to the wave height on the air chamber wall are 19% to 68%(when the stroke is 0.2m), 30% to 61%( when the stroke is 0.3m) , and 19% to 68%(when the stroke is 0.4m). Obviously, the maximum potential energy of the generator sink is larger than the potential energy when a wind turbine is equipped at the end of the air chamber.

    目錄 摘要 i Abstract ii 誌謝 iii 目錄 iv 表目錄 viii 圖目錄 ix 符號表 xiv 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-2-1 波浪發電的原理與種類 2 1-2-2 各國波浪發電機發展現況 4 1-2-3 OWC之發展過程 5 1-3 研究動機 6 1-4 內容概要 6 第二章 理論分析 8 2-1 波浪特性 8 2-1-1 波浪方程式 8 2-1-2 波浪能量 10 2-2 造浪池與共振箱之設計 12 2-2-1 造浪池 12 2-2-2 共振箱尺寸 13 2-2-3 共振箱內部水位變化 14 2-3 最大可用能量分析 15 2-3-1 共振箱壁前波浪位能變化 16 2-3-2 發電水槽最大可用能量 16 2-3-3 共振箱出口處風力發電機最大擷取能量 17 第三章 實驗設備與測量儀器 18 3-1 實驗流程 18 3-2 實驗設備 19 3-3 量測儀器 20 3-4 實驗步驟 21 第四章 實驗結果與討論 23 4-1 造浪板振幅 S=0.4m 23 4-1-1 週期T=3.4s 23 4-1-2 週期T=3.3s 24 4-1-3 週期T=3.2s 24 4-1-4 週期T=3.1s 24 4-1-5 週期T=3.0s 24 4-1-6 週期T=2.9s 25 4-1-7 週期T=2.8s 25 4-1-8 週期T=2.7s 25 4-1-9 週期T=2.6s 26 4-1-10 週期T=2.5s 26 4-1-11 週期T=2.4s 26 4-2 造浪板振幅 S=0.3m 27 4-2-1 週期T=3.0s 27 4-2-2 週期T=2.9s 27 4-2-3 週期T=2.8s 27 4-2-4 週期T=2.7s 28 4-2-5 週期T=2.6s 28 4-2-6 週期T=2.5s 28 4-2-7 週期T=2.4s 29 4-2-8 週期T=2.3s 29 4-2-9 週期T=2.2 s 29 4-2-10 週期T=2.1 s 29 4-2-10 週期T=2.0 s 30 4-2-11 週期T=1.9 s 30 4-3 造浪板振幅 S=0.2m 30 4-3-1 週期T=2.6s 31 4-3-2 週期T=2.5s 31 4-3-3 週期T=2.4s 31 4-3-4 週期T=2.3s 31 4-3-5 週期T=2.2 s 32 4-3-6 週期T=2.1 s 32 4-3-7 週期T=2.0 s 32 4-3-8 週期T=1.9 s 33 4-3-9 週期T=1.8 s 33 4-3-10 週期T=1.7 s 33 4-3-11 週期T=1.6 s 33 4-3-12 週期T=1.5 s 34 4-4 實驗結果討論 34 4-4-1 最大可用能量比較 35 4-4-2 適合此發電方式之波浪 35 第五章 結論與未來工作 37 5-1 結論 37 5-2 實驗誤差 38 5-3 未來工作 39 參考文獻 40 附錄一 各國波浪發電機發展運作概況[8] 97 附錄二 單位面積波浪平均位能公式推導 100 附錄三 單位面積波浪平均動能公式推導 101

    [1] 經濟部能源局, “能源統計年報,”2010.
    [2] 郭博堯, “全球化石能源危機時代與我國所面臨挑戰,” 國政研究報告, 財團法人國家政策研究基金會, 2002.
    [3] 經濟部能源局, “能源發展綱領政策評估說明書(草案),”2010.
    [4] 工業技術研究院綠能與環境研究所,“再生能源網,” 2011.
    [5] Morris-Thomas, M. T., Irvin, R. J., and Thiagarajan, K. P., “An Investigation Into the Hydrodynamic Efficiency of an Oscillating Water Column,” Transactions of the ASME, Vol. 129, pp. 273-278, 2007.
    [6] Robin, P. and Fujita, R. M., “Renewable energy from the ocean,”Marine Policy, vol. 26, pp. 471-479, 2002.
    [7] Falcão, A. F. de O., “Wave energy utilization: A review of the technologies,” Renewable and Sustainable Energy Reviews, vol. 14, Issue: 3, pp. 899-918, 2010.
    [8] 財團法人工業技術研究院, “94年度「我國海域能源蘊藏量分析技術之建立及開發方向評估」, 委辦計畫,” 2006.
    [9] European Marine Energy Center, “EMEC ORKNEY,” 2013.
    [10] 楊鏡堂,萬曉明, 許妙行, 陳建志, 游宗翰, 黃如薏, 蔡佳玲, 黃郁棻, 林佑俊, “我國前瞻能源技術探討,”財團法人中技社, 2008.
    [11] Evans, D. V., “The Oscillating Water Column Wave Energy Device.”J.Inst. Math. Appl., 22, pp. 423-433, 1978.
    [12] Lamb, H., “Hydrodynamics,”6th ed., Dover Publications, New York, 1932.
    [13] Evans, D. V., “Wave-power Absorption by Systems of Oscillating Surface Pressure Distributions,”J. Fluid Mech., Vol. 114, pp. 481–499, 1982.
    [14] Sarmento, A. J. N. A. and Falcão, A. F. de O., “Wave Generation by an Oscillating Surface-pressure and its Application in Wave-Energy Extraction,” J. Fluid Mech., Vol. 150, pp. 467-485, 1984.
    [15] Evans, D. V. and Porter, R., “Hydrodynamic Characteristics of an Oscillating Water Column Wave Energy Device,”Appl. Ocean. Res., Vol. 17, pp. 155-164, 1995.
    [16] Clément, A. H., “Dynamic Nonlinear Response of OWC Wave Energy Devices,”Int. J. Offshore Polar Eng., Vol. 72, pp. 154-159, 1997.
    [17] Lighthill, M. J., “Two-Dimensional Analyses Related to Wave-energy Extraction by Sub-merged Resonant Ducts,”J. Fluid Mech., Vol. 91, pp. 253-317, 1979.
    [18] Lee, C. H., Newman, J. N., and Nielsen, F., “Wave Interactions With an Oscillating Water Column,”Interational Society of Offshore and Polar Engineers, Vol. 1, pp. 82-90, 1996.
    [19] Wang, D. J., Katory, M., and Li, Y. S., “Analytical and Experimental Investigation on the Hydrodynamic Performance of Onshore Wave Power Devices,”Ocean Eng., 29, pp. 871-885, 2002.
    [20] Brito-Melo, A. and Sarmento, A. J. N. A., “Numerical Modeling of Wave-power Plants of the Oscillating Water Column Type,” International Series on Advances in Boundary Elements, Vol. 13, pp. 25-34, 2002.
    [21] McCormick, M. E., “Ocean Wave Energy Conversion,”John Wiley & Sons Publishers, New York, 1981.
    [22] Krogstad, H. E. and Arntsen , Ø. A., “Linear Wave Theory,”Norwegian University of Science and Technology, Trondheim, 2000.
    [23] 李昇泰, “箱網養殖浮式平台之實驗研究-波浪能量轉換分析,”國立中山大學海洋環境及工程研究所碩士論文, 2006.
    [24] 林繼謙, “岸基震盪式波浪發電系統之設計,”國立成功大學系統及船舶機電工程學系碩士論文, 2009.
    [25] Cruz, J., “Ocean Wave Energy: Current Status and Future Prespectives (Green Energy and Technology), ”Springer, 2008.
    [26] Dean, R. G. and Dalrymple, R. A., “Water Wave Mechanics For Engineers and Scientists,”World Scientific, 1991.

    下載圖示 校內:2015-07-29公開
    校外:2015-07-29公開
    QR CODE