簡易檢索 / 詳目顯示

研究生: 島田純
Shimada, Jun
論文名稱: 微粒子介電泳鉗之研究與發展
Development of Micro-particle DEP Tweezers
指導教授: 呂宗行
Leu, Tzong Shyng
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 91
中文關鍵詞: 介電泳微操縱技術光電鉗
外文關鍵詞: Optoelectronic tweezers, Micromanipulation, Dielectrophoresis
相關次數: 點閱:115下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以介電泳力(DEP Force)與光誘發介電泳力(Light Induced DEP Force)為驅動方式,成功的排列、操縱微米粒子於微機電製造的微小晶片中。有別於傳統光鉗利用光壓差來移動微小粒子,以介電泳力為驅動方式有著減低光源能量、較小的工作電壓、較大的操縱範圍、同時操縱大量微粒子、較簡易的實驗設備等優點。
    本研究設計了兩種不同的實驗晶片,分別以介電泳與光誘發介電泳為機制來操縱微米粒子,其差別在於前者需要預先定義出電極的圖形,後者只需定義光源之圖形,在晶片製造上較簡易且操縱粒子之機動性較大,可發展成為新一代之光電鉗。利用光誘發介電泳為機制所設計的晶片如下,我們以上下兩片薄板夾著100um厚度的PDMS水槽作為實驗晶片,其中上薄板為透明電極氧化銦錫(ITO),下薄板使用玻璃做底材,濺鍍上鋁電極並沉積一層光電薄膜作為光導層。在以特定頻率的交流訊號加於上下兩電極後,將高功率光束打入光導層,使產生一虛擬電極於光導層上誘使介電泳效應產生,以正介電泳力操縱PDMS水槽內的10um乳膠粒子,並以光學顯微鏡配合CCD影像擷取系統即時的觀測微粒子的移動軌跡。
    同時我們利用CFDRC分析軟體模擬介電泳鉗的電場梯度、介電泳力場、微粒子運動之軌跡等,並以光電薄膜之光導電係數為改變參數,探討薄膜特性對光誘發介電泳效應之影響。

    This thesis presents experimental studies on the light induced dielectrophoresis (DEP) force in a single MEMS based chip. For the light induced DEP force tweezers, non-uniform electric fields created by light patterns are used as holding forces to trap and move the particles. It has more advantages than conventional optical tweezers, needs less optical power level, larger manipulating area, lower operating voltage, and both micro- or sub-micro particles can be easily manipulated.
    DEP and light induced DEP forces are used as major mechanism to manipulate particles which patterned and pattern-less electrode are designed to form non-uniform electric fields respectively. Light induced DEP tweezers consists of two surfaces, a top transparent electrode indium tin oxide (ITO) glass, and a bottom glass substrate sputtering Al as electrode and coated with photoconductive film. An AC signal is applied between two surfaces at a specific frequency. Particles immersed in DI water are sandwiched between two surfaces. Then patterned light source illuminated onto the photoconductor forms a virtual electrode to transport the particles by using DEP force, just like a virtual tweezers.
    In this study, the simulation was performed with the CFD-ACE+ software. Electric potential, electric field, DEP force and particles trajectories are simulated to verify our design concepts.
    In addition, particles behaviors are observed and captured by using optical microscope and digital CCD camera and then display on a PC monitor. When applying an AC signal with a specific frequency, particles move toward the expected positions due to DEP effects.

    ABSTRACT...................i ACKNOWLEDGEMENT............v CONTENTS..................vi LIST OF TABLE.............ix LIST OF FIGURE.............x NOMENCLATURE.............xii CHAPTER 1 INTRODUCTION...................................1 1.1 Background and Motivation......................1 1.2 What is Microelectromechanical System..........2 1.3 AC Electrokinetics.............................3 1.3.1 Dielectrophoresis..............................4 1.3.2 DEP Force Derivation...........................5 1.4 Survey of DEP Trap Device......................8 1.4.1 DEP Trap.......................................9 1.4.2 Optical Addressing............................10 1.4.3 Dynamic DMD-Driven Optoelectronic Tweezers....10 2 DESIGN OF MICRO PARTICLES DEP TWEEZERS........12 2.1 Mechanism of DEP Tweezers.....................12 2.1.1 Conventional DEP Tweezers.....................13 2.1.2 Light Induced DEP Tweezers....................13 2.2 Photoconductive Material......................14 2.2.1 Selection of Photoconductive Material.........15 2.2.2 Introduction of Amorphous Silicon.............16 2.2.3 Electronic Properties of Amorphous Silicon....17 2.3 Simulation and Analysis.......................18 2.3.1 Simulation Tool...............................19 2.3.2 Preprocess....................................19 2.3.3 Preliminary Simulation Results................21 3 FABRICATION...................................22 3.1 Fabrication Processes.........................22 3.1.1 DEP Tweezers..................................22 3.1.2 Light Induced DEP Tweezers....................25 3.2 Fabrication Results...........................26 4 EXPERIMENT SETUP..............................27 4.1 Experimental Apparatus........................27 4.1.1 Source Meter..................................27 4.1.2 Four Point Probe..............................27 4.1.3 Conductivity Meter............................28 4.1.4 Function Generator............................28 4.1.5 Oscilloscope..................................28 4.1.6 Optical Microscope............................28 4.1.7 Light Source..................................29 4.2 Particle Addressing...........................29 4.3 Particle Pick and Place.......................30 4.4 Particle Assemble and Levitation..............32 4.5 Particle Focusing.............................33 4.6 Particle Relocation...........................33 5 RESULTS AND DISCUSSIONS.......................35 5.1 Simulation Analysis...........................35 5.2 Free Body Analysis............................37 5.2.1 Influence of Brownian Motion..................37 5.2.2 Influence of Gravitational and Buoyancy Force.37 5.2.3 Influence of Electrophoresis..................38 5.2.4 Free Body Analysis............................38 6 CONCLUSION....................................42 6.1 Summary.......................................42 6.2 Future Work...................................43 REFERENCES.............................................44 TABLES.................................................50 FIGURES................................................52 VITA...................................................92

    [1] Telleman P., Larsen U.D., Kutter J., Friis P., and Wolff A. (2000), “Micro tools for cell handling,” Proceedings in SPIE conference on microfluidic devices and systems, 2000
    [2] Muller T., Pfennig A., Klien P., Gradl G., Jager M., and Schnelle T. (2003), “The Potential of Dielectrophoresis for Single-Cell Experiments,” IEEE Engineering in Medical and Biology Magazine, November/December 2003
    [3] Ashkin A., Dziedzic, J. M., Bjorkholm, J.E., Chu, Steven. “Observation of a single-beam gradient force optical trap for dielectric particles,” Optics Letters, vol. 11, no. 5, pp. 288-290, 1986
    [4] Ohta A., Chiou P.-Y., Wu M. C. (2004), “Dynamic array manipulation of microscopic particles via optoelectronics tweezers,” Hilton Head Workshop 2004
    [5] Bonner W. A., Hulett H. R., Sweet R. G.. (1972), “Fluorescence activated cell sorting,” Rev Sci Instrument, 1972, 43:404-409
    [6] Fu A. Y., Spence C., Scherer A., Arnold F. H. and Quake S. R. (1999), “A microfabricated fluorescene-activated cell sorter,” Nano Biotechnology, November 1999, Volume 17, Number 11, pp 1109–1111
    [7] Telleman P., Larsen U. D., Philip J., Blankenstein G., Wolff A. (1998), “Cell Sorting in Microfluidic Systems,” Proc. Micro Total Analysis Systems’98, Banff, 1998, pp39-44
    [8] Larsen U. D., Blankenstein G.., Branebjerg J., “Flow Switch for Analyte Injection and Cell/particle Sorting,” Proc. Micro Total Analysis Systems’96, Basel, 1996, pp113-115
    [9] Lee G.-B., Hung C.-I., Ke B.-J., Huang G.-R., Hwei B.-H. (2001), “Micromachined Pre-Focused 1xN Flow Switch,” Journal of Micromechanics and Microengineering, 2001, Vol. 11, pp. 567-573
    [10] Huh D., Tung Y.-C., Grotberg J. B., Skerlos S., Kurabayashi K., Takayama S. (2001), “Air-liquid Two-phase Microfluidic System for Low-cost, Low-volume and Low-power Micro Flow Cytometer,” Proc. Micro Total Analysis Systems’01, Monterey, 2001, pp468-470
    [11] Tashoro K., Sekiguchi T., Shoji S., Funatsu T., Masumoto W., Sato H. (2000), “Design and Simulation of Particles and Biomolecules Handling Micro Flow Cells with Tree-dimensional Sheath Flow,” Proc. Micro Total Analysis Systems 2000, Enschede, pp209-212
    [12] Ichiki T., Ujiie T., Hara T., Horiike Y., Yasuda K. (2001), “On-chip Cell Sorter for Single Cell Expression Analysis,” Proc. Micro Total Analysis Systems’01, Monterey, 2001, pp271-273
    [13] Takahashi K., Hattori A., Suzuki I., Ichiki T., and Yasuda K. (2004), “Non-destructive on-chip cell sorting system with real-time microscopic image processing,” Journal of Nanobiotechnology, 2004
    [14] Schnelle T., Hagedorn R., Fuhr G., Fiedler S., and Müller T. (1993), “Three-dimensional electric field traps for manipulations of cells—Calculation and experimental verification,” Biochem. Biophys. Acta, vol. 1157, pp. 127–140, 1993
    [15] Fuhr G., Müller T., Schnelle T., Hagedorn R., Voigt A., Fiedler S., Arnold W. M., Zimmermann U., Wagner B., and Heuberger A. (1994), “Radio-frequency microtools for particle and live cell manipulation,” Naturwiss., vol. 81, pp. 528–535, 1994
    [16] Kaler K., Xie J.-P., Jones T.B., and Paul R. (1992), “Dual-frequency dielectrophoretic levitation of Canola protoplasts,” Biophys. J., vol. 63, pp. 58–69, 1992
    [17] Voldman J., Toner M., Gray M., and Schmidt M. (2003), “Design and analysis of extruded quadrupolar dielectrophoretic traps,” J. Electrostat., vol. 57, pp. 69–90, 2003
    [18] Pethig R. (1996), “Dielectrophoresis: Using inhomogeneous ac electrical fields to separate and manipulate cells,” Crit. Rev. Biotechnol., vol. 16, no. 4, pp. 331–348, 1996
    [19] Becker F.F., Wang X.-B., Huang Y., Pethig R., Vykoukal J., and Gascoyne P. (1995), “Separation of human breast cancer cells from blood by differential dielectric affinity,” Proc. Natl. Acad. Sci., vol. 92, pp. 860–864, 1995
    [20] Morgan H., Hughes M.P., and Green N.G. (1999), “Separation of submicron bioparticles by dielectrophoresis,” Biophys. J., vol. 77, no. 1, pp. 516–525, 1999
    [21] Hughes M.P. (2003), Nanoelectromechanics in Engineering and Biology. Boca Raton, FL: CRC, 2003
    [22] Müller T., Gradl G., Howitz S., Shirley S., Schnelle T., and Fuhr G. (1999), “A 3-D microelectrode system for handling and caging single cells and particles,” Biosensors & Bioelectronics, vol. 14, pp. 247–256, 1999
    [23] Jones T.B. and Washizu M. (1994), “Equilibria and dynamics of DEP-levitated particles: multipolar theory,” J. Electrostat., vol. 33, 199–212, 1994
    [24] Schnelle T., Müller T., Gradl G., Shirley S.G., and Fuhr G. (1999), “Paired micro electrode system: Dielectrophoretic particle sorting and force calibration,” J. Electrostat., vol. 47, no. 3, pp. 121–132, 1999
    [25] Fiedler S. et al. (1998), “Dielectrophoretic sorting of particle and cells in a microsystem,” Anal. Chem., vol. 70, pp. 1909–1915, 1998
    [26] Dürr M., Kentsch J., Müller T., Schnelle T., and Stelzle M. (2003), “Microdevices for manipulation and accumulation of micro- and nanoparticles by dielectrophoresis,” Electrophoresis, vol. 24, no. 4, pp. 722–731, 2003
    [27] Reichle C., Müller T., Schnelle T., and Fuhr G. (1999), “Electrorotation in octopole micro cages,” J. Phys. D: Appl. Phys., vol. 32, pp. 2128–2135, 1999
    [28] Schnelle T., Müller T., and Fuhr G. (2000), “Trapping in ac octode field cages,” J. Electrostat., vol. 50, pp. 17–29, 2000
    [29] Pohl H. A. (1978), Dielectrophoresis, Cambridge University Press, 1978
    [30] Curtis, Jennifer E., Koss, Brain A., Grier, David G. “Dynamic holographic optical tweezers,” Optics Communications, vol. 207, pp.169-175, 2002
    [31] Berns M. W., “Biophys. Lett.” 19, 283-285, 1974
    [32] Ozkan M., Sangeeta B., Esener S. C. “Optical addressing of polymer beads in microdevices”
    [33] Folch A., Ayon A. “Molding of deep polymethylsiloxane microstructure for microfluidics and biological applications,” J. Biomech. Eng., 121 (1): 28, 1999
    [34] Duffy D. C. “patterning electroluminescent materials with feature size as small as 5mm using elastomeric membranes as masks for dry lift-off,” Adv. Mater., 11(7): 546, 1999
    [35] Aaron T. Ohta, Chiuo Pei Yu, Wu M. C. “Dynamic DMD-Driven Optoelectronic Tweezers for microscopic particle manipulation”
    [36] Jones T. B. (1995), “Electromechanics of Particles,” Cambridge University Press, 1995
    [37] Wang X. B., Huang Y., Becker F. F. and Gascoyne P R C, “A unified theory of dielectrophoresis and traveling wave dielectrophoresis,” J. Phys. D: Appl. Phys. 27 (1994) 1571-1574
    [38] Voldman J., Toner M., Gray M. L., Schmidt M. A., “A dielectrophoresis based array cytometer,” Transducers ’01, 322-325
    [39] Voldman J., Brain Taff and Adam Rosenthal, Circuit, system and communication, Cellular BioMEMS, RLE progress report 145
    [40] Takahashi K. and Konagai M., “Amorphous silicon solar cells,” Wiley, 1986
    [41] Ozkan M., Qzkan C. S., Kibar O., “Heterogeneous integration through electrokinetic migration,” IEEE engineering in medicine and biology, 144-151, Nov/Dec 2001
    [42] Pethig R., Markx G. H., “Applications of dielectrophoresis in biotechnology,” TIBTECH, Vol. 15, pp. 429-432, 1997

    下載圖示 校內:2006-07-14公開
    校外:2006-07-14公開
    QR CODE