| 研究生: |
張簡宛珊 Chien, Wan-Shan Chang |
|---|---|
| 論文名稱: |
發展皮層電刺激於調節帕金森氏大鼠之大腦塑性 Development of Cortical Electrical Stimulation for Modulating Brain Plasticity in Parkinson's Disease Rats |
| 指導教授: |
陳家進
Chen, Jia-Jin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 40 |
| 中文關鍵詞: | 帕金森氏症 、陣發型刺激 、皮質電刺激 、動作誘發電位 、可塑性 |
| 外文關鍵詞: | theta burst stimulation, cortical electrical stimulation, motor evoke potential, plasticity |
| 相關次數: | 點閱:101 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
帕金森氏症為一常見之老年人神經退化疾病。帕金森氏症患者依不同的嚴重程度承受像是肌肉僵直,顫抖和步態不穩等長期之運動功能障礙,並表現出神經可塑性和運動皮質神經調節缺失等問題。不同地皮質刺激技術像是重複性經顱磁刺激(rTMS)或皮質電刺激(CES)已被日益地發展,經由類似可塑性機制去調節皮質興奮性,其被認為對於帕金森氏症是具有治療潛力的。然而,像是皮質刺激這種治療方法在帕金森氏症上,目前仍然是不清楚且具有爭議的。因此,疾病動物模型有助於降低差異且提供了皮質刺激之機制了解在未來目標性突觸可塑性的治療應用。為了更了解皮質刺激之治療效果的神經機制並將研究轉至嚙齒動物疾病模型上,模擬重複性經顱磁刺激之皮質電刺激技術首度被發展於大鼠身上。此外,藉此種模型幫助下,經由運動行為和電生理技術來測試其慢性帕金森氏症大鼠在四週皮質陣發型電刺激模式下之治療效果。與重複性經顱磁刺激結果相同,在正常大鼠實驗下,間歇性陣發型刺激成功地使動作誘發電位上升,而在連續性陣發型刺激下,動作誘發電位則呈現下降。經過四周時間的觀察,比較陣發型皮質電刺激於慢性帕金森氏症大鼠在長期治療與偽治療下,結果發現陣發型皮質電刺激治療逐步地改善了步行速度和步長之運動功能。此外,藉由陣發型皮質電刺激所誘發之運動可塑性顯示,在偽治療下之運動可塑性仍為缺損情況,但在陣發型皮質電刺激長期治療下之運動可塑性則傾向接近正常大鼠之可塑性變化。綜合以上結果,本研究發展一動物模型來測試皮質電刺激所誘發出的動作可塑性,並進一步運用於帕金森氏症大鼠之長期治療上。有了此動物模型之幫助下,我們發現在陣發型皮質電刺激治療後,運動功能障礙和運動可塑性受損的情形有降低之趨勢。發展陣發型皮質電刺激之動物模型可用來當作人類和動物實驗的轉移銜接平台,並發展出像是重複性經顱磁刺激或皮質電刺激對帕金森氏症或其他神經疾病之皮質刺激治療方式。
Parkinson's disease (PD) is one of most common neurodegenerative diseases of the elderly which affects approximately seven million people worldwide and thirty thousand people in Taiwan. Individuals with different severities of Parkinson's disease (PD) suffer long lasting motor dysfunctions such as muscular rigidity, tremor and gait disturbance which also exhibits. The impairments of neuroplasticity and neuromodulation of motor cortex. Various cortical stimulation techniques such as repetitive magnetic stimulation (rTMS) or cortical electrical stimulation (CES), have been developed for modulating cortical excitability through plasticity-like mechanisms which are considered having therapeutic potentials for PD. However, the therapeutic value of such cortical stimulation approach for PD is still unclear and controversial. Accordingly, a disease animal model would be helpful to reduce the discrepancy and provide insights of cortical stimulation for future therapeutic applications targeting synaptic plasticity. To better understand the neural mechanism underlying the therapeutic effects of cortical stimulation and to enable translational research in rodent disease models, the CES module mimicking rTMS was first developed in rats. Furthermore, with the help of this model, the therapeutic effects of four weeks CES-theta burst stimulation (TBS) intervention were examined from motor behavioral and electrophysiological findings in advanced PD rats. In parallel with previous rTMS results, intermittent TBS (iTBS) successfully increased motor evoked potentials (MEPs), while MEPs suppressed after continuous TBS (cTBS) in healthy rats. For long-term effects of CES-TBS in chronic PD rats, in comparison with sham-treatment PD group, CES-TBS treatment progressively improved locomotor function in walking speed and step length over a 4-week time-course of observation. Furthermore, the motor plasticity induced by CES-TBS showed that the amount of motor plasticity were impaired in sham treatment PD rats but relatively evident in long-term CES treated PD group. In conclusion, an animal model for testing CES-induced motor plasticity in vivo has been developed for testing the beneficial effects of long-term CES treatment in PD rats. With the help of this model, we showed that the motor dysfunction and impaired motor plasticity can be reduced after CES-TBS treatment. The developed CES-TBS animal model may serve as a translational platform bridging human and animal studies for developing therapeutic strategies of cortical stimulation such as rTMS or CES for PD or other neurological disorders.
Adkins-Muir DL, Jones TA (2003) Cortical electrical stimulation combined with rehabilitative training: enhanced functional recovery and dendritic plasticity following focal cortical ischemia in rats. Neurological research 25:780-788.
Alm PA, Dreimanis K (2013) Neuropathic pain: transcranial electric motor cortex stimulation using high frequency random noise. Case report of a novel treatment. Journal of pain research 6:479-486.
Barker AT, Barker IL, Freeston R, Jalinous JA, Jarratt (1985) Motor responses to non-invasive brain stimulation in clinical practice. Electroencephalography and clinical neurophysiology 61:S70.
Benninger DH, Berman BD, Houdayer E, Pal N, Luckenbaugh DA, Schneider L, Miranda S, Hallett M (2011) Intermittent theta-burst transcranial magnetic stimulation for treatment of Parkinson disease. Neurology 76:601-609.
Betarbet R, Betarbet T, Sherer JT, Greenamyre (2002) Animal models of Parkinson's disease. BioEssays 24:308-318.
Bologna M, Conte A, Suppa A, Berardelli A (2012) Motor cortex plasticity in Parkinson's disease: advances and controversies. Clin Neurophysiol 123:640-641.
Buhmann C, Glauche V, Sturenburg HJ, Oechsner M, Weiller C, Buchel C (2003) Pharmacologically modulated fMRI--cortical responsiveness to levodopa in drug-naive hemiparkinsonian patients. Brain 126:451-461.
Canavero S, Paolotti R, Bonicalzi V, Castellano G, Greco-Crasto S, Rizzo L, Davini O, Zenga F, Ragazzi P (2002) Extradural motor cortex stimulation for advanced Parkinson disease. Journal of Neurosurgery 97:1208-1211.
Chen RC, Chang SF, Su CL, Chen TH, Yen MF, Wu HM, Chen ZY, Liou HH (2001) Prevalence, incidence, and mortality of PD: a door-to-door survey in Ilan county, Taiwan. Neurology 57:1679-1686.
de Lau LM, Breteler MM (2006) Epidemiology of Parkinson's disease. Lancet Neurol 5:525-535.
De Rose M, Guzzi G, Bosco D, Romano M, Lavano SM, Plastino M, Volpentesta G, Marotta R, Lavano A (2012) Motor cortex stimulation in Parkinson's disease. Neurology research international 2012:502096.
Degardin A, Devos D, Defebvre L, Destee A, Plomhause L, Derambure P, Devanne H (2012) Effect of intermittent theta-burst stimulation on akinesia and sensorimotor integration in patients with Parkinson's disease. Eur J Neurosci 36:2669-2678.
Deuschl G, Deuschl C, Schade Brittinger P, Krack J, Volkmann H, Schäfer K, Bötzel C, Daniels A, Deutschländer U, Dillmann W, Eisner D, Gruber W, Hamel J, Herzog R, Hilker S, Klebe M, Kloß J, Koy M, Krause A, Kupsch D, Lorenz S, Lorenzl HM, Mehdorn J, Moringlane W, Oertel M, Pinsker H, Reichmann A, Reuß G-H, Schneider A, Schnitzler U, Steude V, Sturm L, Timmermann V, Tronnier T, Trottenberg L, Wojtecki E, Wolf W, Poewe J, Voges (2006) A Randomized Trial of Deep-Brain Stimulation for Parkinson's Disease. The New England journal of medicine 355:896-908.
Elahi B, Chen R (2009) Effect of transcranial magnetic stimulation on Parkinson motor function--systematic review of controlled clinical trials. Mov Disord 24:357-363.
Elahi B, Elahi B, Chen R (2009) Effect of transcranial magnetic stimulation on Parkinson motor function--systematic review of controlled clinical trials. Movement disorders : official journal of the Movement Disorder Society 24:357-363.
Ellaway PH, Davey NJ, Maskill DW, Dick JP (1995) The relation between bradykinesia and excitability of the motor cortex assessed using transcranial magnetic stimulation in normal and parkinsonian subjects. Electroencephalogr Clin Neurophysiol 97:169-178.
Fagundes-Pereyra WJ, Teixeira MJ, Reyns N, Touzet G, Dantas S, Laureau E, Blond S (2010) Motor cortex electric stimulation for the treatment of neuropathic pain. Arquivos de neuro-psiquiatria 68:923-929.
Fasano A, Piano C, De Simone C, Cioni B, Di Giuda D, Zinno M, Daniele A, Meglio M, Giordano A, Bentivoglio AR (2008) High frequency extradural motor cortex stimulation transiently improves axial symptoms in a patient with Parkinson's disease. Mov Disord 23:1916-1919.
Fonoff ET, Pereira JF, Jr., Camargo LV, Dale CS, Pagano RL, Ballester G, Teixeira MJ (2009) Functional mapping of the motor cortex of the rat using transdural electrical stimulation. Behav Brain Res 202:138-141.
Fregni F, Simon DK, Wu A, Pascual-Leone A (2005) Non-invasive brain stimulation for Parkinson's disease: a systematic review and meta-analysis of the literature. Journal of neurology, neurosurgery, and psychiatry 76:1614-1623.
Gamboa OL, Antal A, Laczo B, Moliadze V, Nitsche MA, Paulus W (2011) Impact of repetitive theta burst stimulation on motor cortex excitability. Brain stimulation 4:145-151.
Giladi N, Giladi TA, Treves ES, Simon H, Shabtai Y, Orlov B, Kandinov D, Paleacu AD, Korczyn (2001) Freezing of gait in patients with advanced Parkinson's disease. Journal of Neural Transmission 108:53-61.
Gutierrez JC, Seijo FJ, Alvarez Vega MA, Fernandez Gonzalez F, Lozano Aragoneses B, Blazquez M (2009) Therapeutic extradural cortical stimulation for Parkinson's Disease: report of six cases and review of the literature. Clinical neurology and neurosurgery 111:703-707.
Haslinger B, Erhard P, Kampfe N, Boecker H, Rummeny E, Schwaiger M, Conrad B, Ceballos-Baumann AO (2001) Event-related functional magnetic resonance imaging in Parkinson's disease before and after levodopa. Brain 124:558-570.
Hsieh TH, Chen JJ, Chen LH, Chiang PT, Lee HY (2011) Time-course gait analysis of hemiparkinsonian rats following 6-hydroxydopamine lesion. Behav Brain Res 222:1-9.
Hsieh TH, Huang YZ, Rotenberg A, Pascual-Leone A, Chiang YH, Wang JY, Chen JJ (2014) Functional Dopaminergic Neurons in Substantia Nigra are Required for Transcranial Magnetic Stimulation-Induced Motor Plasticity. Cereb Cortex.
Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC (2005) Theta burst stimulation of the human motor cortex. Neuron 45:201-206.
Jankovic J, Jankovic M, Stacy (2007) Medical Management of Levodopa-Associated Motor Complications in Patients with Parkinson???s Disease. CNS drugs 21:677-692.
Kamida T, Fujiki M, Hori S, Isono M (1998) Conduction pathways of motor evoked potentials following transcranial magnetic stimulation: a rodent study using a "figure-8" coil. Muscle & nerve 21:722-731.
Kobayashi M, Pascual-Leone A (2003) Transcranial magnetic stimulation in neurology. The Lancet Neurology 2:145-156.
Lee HY, Hsieh TH, Liang JI, Yeh ML, Chen JJ (2012) Quantitative video-based gait pattern analysis for hemiparkinsonian rats. Medical & biological engineering & computing 50:937-946.
Lefaucheur JP, Drouot X, Von Raison F, Menard-Lefaucheur I, Cesaro P, Nguyen JP (2004) Improvement of motor performance and modulation of cortical excitability by repetitive transcranial magnetic stimulation of the motor cortex in Parkinson's disease. Clin Neurophysiol 115:2530-2541.
Lindenbach D, Bishop C (2013) Critical involvement of the motor cortex in the pathophysiology and treatment of Parkinson's disease. Neuroscience and biobehavioral reviews 37:2737-2750.
Lisanby S, Lisanby R, Belmaker (2000) Animal models of the mechanisms of action of repetitive transcranial magnetic stimulation (RTMS): Comparisons with electroconvulsive shock (ECS). Depression and anxiety 12:178-187.
Metz GA, Tse A, Ballermann M, Smith LK, Fouad K (2005) The unilateral 6-OHDA rat model of Parkinson's disease revisited: an electromyographic and behavioural analysis. The European journal of neuroscience 22:735-744.
Pascual-Leone A, Valls-Sole J, Wassermann EM, Hallett M (1994) Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain 117 ( Pt 4):847-858.
Pascual Leone A (1998) Study and modulation of human cortical excitability with transcranial magnetic stimulation. Journal of clinical neurophysiology 15:333.
Rotenberg A, Muller PA, Vahabzadeh-Hagh AM, Navarro X, Lopez-Vales R, Pascual-Leone A, Jensen F (2010) Lateralization of forelimb motor evoked potentials by transcranial magnetic stimulation in rats. Clin Neurophysiol 121:104-108.
Sabatini U, Boulanouar K, Fabre N, Martin F, Carel C, Colonnese C, Bozzao L, Berry I, Montastruc JL, Chollet F, Rascol O (2000) Cortical motor reorganization in akinetic patients with Parkinson's disease: a functional MRI study. Brain 123 ( Pt 2):394-403.
Shirota Y, Ohtsu H, Hamada M, Enomoto H, Ugawa Y (2013) Supplementary motor area stimulation for Parkinson disease: A randomized controlled study. Neurology 80:1400-1405.
Siebner HR, Rothwell J (2003) Transcranial magnetic stimulation: new insights into representational cortical plasticity. Exp Brain Res 148:1-16.
Smith Y, Villalba R (2008) Striatal and extrastriatal dopamine in the basal ganglia: an overview of its anatomical organization in normal and Parkinsonian brains. Movement disorders : official journal of the Movement Disorder Society 23 Suppl 3:S534-547.
Tolwani RJ, Jakowec MW, Petzinger GM, Green S, Waggie K (1999) Experimental Models of Parkinson's Disease: Insights from Many Models. Comparative Medicine 49:363-371.
Touge T, Gerschlager W, Brown P, Rothwell JC (2001) Are the after-effects of low-frequency rTMS on motor cortex excitability due to changes in the efficacy of cortical synapses? Clin Neurophysiol 112:2138-2145.
Truong L, Allbutt H, Kassiou M, Henderson JM (2006) Developing a preclinical model of Parkinson's disease: a study of behaviour in rats with graded 6-OHDA lesions. Behav Brain Res 169:1-9.
Tsubokawa T, Katayama Y, Yamamoto T, Hirayama T, Koyama S (1991) Chronic Motor Cortex Stimulation for the Treatment of Central Pain. In: Advances in Stereotactic and Functional Neurosurgery 9, vol. 52 (Hitchcock, E. et al., eds), pp 137-139: Springer Vienna.
Vahabzadeh-Hagh AM, Muller PA, Pascual-Leone A, Jensen FE, Rotenberg A (2011) Measures of cortical inhibition by paired-pulse transcranial magnetic stimulation in anesthetized rats. J Neurophysiol 105:615-624.
Wang H, Wang X, Scheich H (1996) LTD and LTP induced by transcranial magnetic stimulation in auditory cortex. Neuroreport 7:521-525.
Yoon MC, Shin MS, Kim TS, Kim BK, Ko IG, Sung YH, Kim SE, Lee HH, Kim YP, Kim CJ (2007) Treadmill exercise suppresses nigrostriatal dopaminergic neuronal loss in 6-hydroxydopamine-induced Parkinson's rats. Neurosci Lett 423:12-17.
Yoon YS, Yu KP, Kim H, Kim HI, Kwak SH, Kim BO (2012) The effect of electric cortical stimulation after focal traumatic brain injury in rats. Annals of rehabilitation medicine 36:596-608.