| 研究生: |
郭雯寧 Kuo, Wen-Ning |
|---|---|
| 論文名稱: |
藉由適地性社群網絡中打卡行為探勘之地標推薦方法 Mining User Check-in Behaviors in Location-Based Social Networks for Point-of-Interest Recommendation |
| 指導教授: |
曾新穆
Tseng, Vincent S. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 推薦技術 、地標 、資料探勘 、適地性網路社交 、使用者偏好探勘 |
| 外文關鍵詞: | Recommendation Techniques, Point-Of-Interest, Data Mining, Location-Based Social Network, User Preference Mining |
| 相關次數: | 點閱:103 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,使用適地性社交網路做地標推薦服務的研究備受矚目,現今許多推薦技術都只能建立在利用使用者的打卡行為上。我們在本論文中提出一個創新的方法,名稱為Urban POI Mine (UPOI-Mine),基於使用者的喜好與地點的特性對適地性社交網路的使用者做地標推薦。其推薦模型的核心為利用使用者正規化後的打卡行為資料,訓練出以多元線性迴歸為基礎的預測器。再利用此預測器評估每個使用者的偏好。我們可從適地性社交網路中取出每個地標的特徵值,特徵值分成三大類:1. 社交方面 2. 該地標熱門程度 3.使用者偏好度。社交方面的特徵值是經由到過該地標且為社交網路中相似的使用者的打卡行為得到;地標熱門程度的特徵值是直接評估該地標相關的熱門程度得到;喜好相關程度的特徵值由計算該地標被打卡的機率得到,而機率是由該地標的標籤與使用者喜好之間的相關性產生。我們設計了一系列完整的實驗,透過真實的打卡資料,證明我們的方法可以非常準確的進行地標推薦。本研究為首例利用結合社交、地標熱門程度與使用者偏好度三種特徵值,推薦都市中的地標給使用者。
In this thesis, we propose a novel approach named Urban POI Mine (UPOI-Mine) that integrates location-based social network (LBSN) for recommending users urban POIs based on the user preferences and location properties simultaneously. The core idea of UPOI-Mine is to build a regression-tree-based predictor in the normalized check-in space so as to support the prediction of interestingness of POI related to each user’s preference. Based on the LBSN data, we extract the features of places from i) Social Factor (SF), which is summarized from all socially similar users’ check-ins at a specific POI for each user; ii) Individual Preference (IP), which indicates the probability of checking in a POI related to the semantic tag between the user and POI; and iii) POI Popularity (PP), which is derived by measuring relative popularity of individual POI. To our best knowledge, this is the first work on urban POI recommendation that considers social factor, individual preference and POI popularity in LBSN data simultaneously. Through a series of experiments on a real dataset, we have validated our proposed UPOI-Mine and shown that UPOI-Mine has excellent performance under various conditions.
[1] Foursquare, http://www. Foursqure.com/
[2] Gowalla, http://www.Gowalla.com/
[3] B. Berjani and T. Strufe. A Recommendation System for spots in Location-Based Online Social Network. Proceedings of the Workshop on Social Network Systems Article No.4, Salzburg, 2011.
[4] S. Debnath, N. Ganguly, P. Mitra. Feature Weighting in Content Based Recommendation System Using Social Network Analysis. Proceedings of WWW, pages 1041-1042, Beijing, China, 2008.
[5] I. Guy, N. Zwerdling, D. Carmel, I. Ronen, E. Uziel, S. Yogev, S. Koifman. Personalized recommendation of social software items based on social relations. Proceedings of RecSys, pages 53-60, New York, New York, USA, 2009.
[6] J. Hu, H. J. Zeng, H. Li, C. Niu, Z. Chen. Demographic prediction based on user's browsing behavior. Proceedings of WWW, pages 151-160, Banff, Alberta, Canada, 2007.
[7] T. Horozov, N. Narasimhan, V. Vasudevan. Using location for personalized POI recommendations in mobile environments. Proceedings of SAINT, pages 124-129, Phoenix, Arizona, USA, 2006.
[8] H. Jeung, Q. Liu, H. T. Shen, and X. Zhou. A hybrid prediction model for moving objects. Proceedings of ICDE, pages 70-79, Cancun, Mexico, 2008.
[9] M. Jamali, M. Ester. TrustWalker: A Random Walk Model for Combining Trust-based and Item-based Recommendation. Proceedings of KDD, pages 397-406, Paris, 2009.
[10] M. Jamali, T. Huang, M. Ester. A Generalized Stochastic Block Model for Recommendation in Social Rating Networks. Proceedings of RecSys, pages 53-60, Chicago, IL, USA, 2011.
[11] R. Jin, L. Si, C.-X. Zhai, J. Callan. Collaborative filtering with decoupled models for preferences and ratings. Proceedings of CIKM, pages 309 – 316, New Orleans, Louisiana, USA, 2003.
[12] E. H.-C. Lu, W.-C. Lee and V. S. Tseng, A Framework for Personal Mobile Commerce Pattern Mining and Prediction. IEEE Transactions on Knowledge and Data Engineering (TKDE), volume 24(5), pages 769-782, 2012.
[13] K. W.-T. Leung, D. L. Lee, W.-C. Lee. CLR: A Collaborative Location Recommendation Framework based on Co-Clustering. Proceedings of SIGIR, pages 305-314, Beijing, China, 2011.
[14] M.-J. Lee and C.-W. Chung. A User Similarity Calculation Based on the Location for Social Network Services. Proceedings of DASFAA, pages 38-52, Hong Kong, China, 2011.
[15] A. Monreale, F. Pinelli, R. Trasarti. WhereNext: a Location Predictor on Trajectory Pattern Mining. Proceedings of KDD, pages 637-646, Paris, 2009.
[16] D. Manning, P. Raghavan and H. Schütze. Introduction to Information Retrieval. Cambridge University Press, 2008.
[17] H. Ma, H. Yang, M. R. Lyu, I. King. SoRec: Social Recommendation Using Probabilistic Matrix Factorization. Proceedings of Information and knowledge management, pages 931-940, Napa Valley, California, USA, 2008.
[18] T. Menzies, J. S. D. Stefano, M. Chapman. Learning Early Lifecycle IV&V Quality Indicators. Proceedings of International Software Metrics Symposium, pages 88-96, Sydney, Australia, 2003.
[19] M. Morzy. Prediction of moving object location based on frequent trajectories. Springer ISCIS, volume 4263 of LNCS, pages 583–592, 2006.
[20] M. Morzy. Mining frequent trajectories of moving objects for location prediction. Springer MLDM, volume 4571 of LNCS, pages 667–680, 2007.
[21] P. Massa and P. Avesani. Trust-aware Recommender Systems. Proceedings of RecSys, pages 17-24, Minneapolis, Minnesota, USA, 2007.
[22] C. Ono, M. Kurokawa, Y. Motomura, and H. Asoh. A Context-Aware Movie Preference Model Using a Bayesian Network for Recommendation and Promotion. Springer User Modeling, volume 4511, pages 247-257, 2007.
[23] M. J. Pazzani and D. Billsus. Content-Based Recommendation Systems. Springer Adaptive Web, volume 4321, pages 325–341, 2007.
[24] A. E. Shahidi and J. Mahjoobi. Comparison between M5’ model tree and neural networks for prediction of significant wave height in Lake Superior. Ocean Engineering, volume 36(15-16), pages 1175–1181, 2009.
[25] B. Sarwar, G. Karypis, J. Konstan, J. Riedl. Item-based collaborative filtering recommendation algorithms. Proceedings of WWW, pages 285–295, Hong Kong, China, 2001.
[26] E. Spertus, M. Sahami, O. Buyukkokten. Evaluating similarity measures: a large-scale study in the Orkut social network. Proceedings of KDD, pages 678-684, Chicago, IL, USA, 2005.
[27] J. B. Schafer, D. Frankowski, J. Herlocker and S. Sen. Collaborative Filtering Recommender Systems. Springer Adaptive Web, volume 4321 of LNCS, pages 291–324, 2007.
[28] S. Scellato, A. Noulas, C. Mascolo. Exploiting Place Features in Link Prediction on Location-based Social Networks. Proceedings of KDD, pages 1046-1054, San Diego, California, USA, 2011.
[29] Y. Wang and I. H. Witten. Induction of model trees for predicting continuous classes. Proceedings of the poster papers of the European Conference on Machine Learning. University of Economics, Faculty of Informatics and Statistics, Prague, 1997.
[30] G. Yavas, D. Katsaros, Ö. Ulusoy, and Y. Manolopoulos. A data mining approach for location prediction in mobile environments. D.K.E., volume 54(2), pages 121–146, 2005.
[31] J. Yuan, Y. Zheng, and X. Xie, Urban Computing with Taxicabs. Proceedings of Ubiquitous Computing, pages 89-98, Beijing, China, 2011.
[32] J. Yuan, Y. Zheng, X. Xie. Discovering regions of different functions in a city using human mobility and POIs. Proceedings of KDD, Beijing, China, 2012.
[33] J. J.-C. Ying, W.-C. Lee, T.-C. Weng, V. S. Tseng. Semantic Trajectory Mining for Location Prediction. Proceedings of GIS, pages 43-43, Chicago, Illinois, 2011.
[34] J. J.-C. Ying, E. H.-C. Lu, W.-C. Lee, T.-C. Weng, V. S. Tseng. Mining User Similarity from Semantic Trajectories. Proceedings of SIGSPATIAL International Workshop on Location Based Social Networks, pages 19-26, San Jose, California, 2010.
[35] S.-J. Yen, Y.-S. Lee, C.-H. Lin and J.-C. Ying, Investigating the Effect of Sampling Methods for Imbalanced Data Distributions. Proceedings of IEEE International Conference on Systems, Man and Cybernetics, pages 4163-1468, Taipei, Taiwan, 2006.
[36] M. Ye, P. Yin, W.-C. Lee. Location Recommendation for location-based Social Network. Proceedings of GIS, pages 458-461, San Jose, California, 2010.
[37] M. Ye, P. Yin, W.-C. Lee and D.-L. Lee. Exploiting Geographical Influence for Collaborative Point-of-Interest Recommendation. Proceedings of SIGIR, pages 1046-1054, Beijing, China, 2011.
[38] S. H. Yang, B. Long, A. Smola, N. Sadagopan, Z. Zheng, H. Zha. Like like alike — Joint Friendship and Interest Propagation in Social Networks. Proceedings of WWW, pages 537-546, San Jose, California, 2011.
[39] Y. Zheng, L. Zhang, X. Xie, W.-Y. Ma. Mining User Similarity Based on Location History. Proceedings of GIS, Article No. 34, Irvine, CA, USA, 2008.
[40] Y. Zheng, L. Zhang, X. Xie, W.-Y. Ma. Mining interesting locations and travel sequences from GPS trajectories. Proceedings of WWW, pages 791-800, Madrid, Spain, 2009.