| 研究生: |
朱育弘 Chu, Yu-Hung |
|---|---|
| 論文名稱: |
以聚焦離子束製作具微奈米結構之鍍金基板於表面增顯拉曼散射之應用 Focused Ion Beam Based Micro/nano-structured Au Substrate for the Application of Surface Enhanced Raman Scattering |
| 指導教授: |
廖峻德
Liao, Jiunn-Der |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 表面增顯拉曼散射 、聚焦離子束 、R6G 、流行性感冒病毒 |
| 外文關鍵詞: | Surface Enhanced Raman Scattering (SERS), FIB, R6G, influenza virus |
| 相關次數: | 點閱:146 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
醫學領域上精確且快速之診斷感染疾病方式一直以來為研究之重要方向,而利用表面電漿共振(SPR)現象之技術發展越來越受人矚目,特別是表面增顯拉曼散射(SERS)之應用逐漸成熟並開始運用在致病物種之檢測,現今SERS領域上開始發展利用具微奈米結構修飾之SERS效應基板方式來增強待測物訊號,並解決傳統以奈米粒子膠體溶液增顯會有再現性不足之問題。本研究利用聚焦離子束(FIB)方式在鍍金基材表面上直接進行微奈米結構陣列之製作來排除化學微影製程之化學汙染與步驟繁瑣費時之缺點,並藉由聚焦離子束可程式化精準製作出微奈米即結構之特色製作出不同特性之微奈米結構,來對影響SERS之結構上的幾何參數進行靈敏度之探討。研究中,先利用FIB製作出不同尺寸、間距與幾何形狀之微奈米結構陣列,且利用羅丹明6G(R6G)分子探針進行利用微拉曼光譜儀進行SERS效應之檢測與評估,結果顯示對於結構尺寸從300, 250 , 200和150 nm縮小時,150 nm尺寸大小之位於檢測區內結構數越多相對增加熱區之範圍使得訊號增強,而結構彼此間距從83, 58 ,45, 31, 26減少至22 nm時,結構間越近會引發熱區(hot spot)來提升電磁效應之貢獻使訊號增強;當變化微結構本身形狀所引發之避雷針效應(lightning rod effect)也會加強電磁效應使SERS效果加強,研究中具最多邊角之六邊形有較佳之SERS效果;在幾何參數之變化下,對其SERS之影響程度也有所差異,SERS之靈敏度為改變結構間距遠近較高,其次為形狀,而結構尺寸影響程度較小。利用所製作之SERS效應基板進行A型流行性感冒H1N1亞型病毒作拉曼光譜之檢測,得到胺基酸如苯丙胺酸與色胺酸以及蛋白質之資訊,推測訊號來自病毒外層包膜之蛋白質等結構,顯示以SERS效應基板方式能有效檢測出致病物種,達到快速精確檢測之目的。
The study of rapid and accurate diagnosis is of infectious diseases important in the medical field. The development of techniques using surface plasmon resonance (SPR) has become popular and has been applied in the detection of pathogens. Especially the application of surface enhanced Raman scattering (SERS) grows up and begins to be used for the detection of pathogens. Compared with traditional nanoparticles, micro/nanostructures on specific substrate have potentials to be used as SERS-active substrates, which are used to enhance the signal of species. In this study, we used focused ion beam (FIB) to fabricate micro/nanostructures array on the Au film directly to avoid chemical pollution and save time. Besides, several parameters, such as dimension and space were also designed to study their effects on SERS. Finally, this SERS-active substrate was used to diagnose viruses.
In this study, the micro/nanostructure with different dimensions, space and geometry (shape) in array were fabricated by FIB. Moreover R6G as a molecular probe was chosen to estimate the effect of SERS. Based on the results, it indicated higher intensity appeared as dimension and space were decreased because of more hot spot areas. In addition, we also found lightning rod effect induced by varying geometry of micro/nanostructure can also raise EM effect to enhance the signal. Taken together, SERS was affected by space, followed by geometry and finally by dimension.
In the end of the study, we tried to detect the Raman spectra of influenza A virus WSN/33 (H1N1) through our SERS-active substrate. Raman spectra revealed the information of amino acids, phenylalanine and tryptophan, and proteins, indicated the information come from envelope and matrix proteins of virus. It was proved to be a new diagnostic method that is much sensitive and simple and able to detect viruses.
[1] A. Lyon, C. D. Keating, A. P. Fox, B. E. Baker, L. He, S. R. Nicewarner, S. P. Mulvaney and M. J. Natan, "Raman Spectroscopy", Analytical Chemistry, Vol. 70(12), 341-362, 1998.
[2] K. Katrin and et al., "Surface-enhanced Raman scattering and biophysics", Journal of Physics: Condensed Matter, Vol. 14(18), R597, 2002.
[3] K. C. Schuster, E. Urlaub and J. R. Gapes, "Single-cell analysis of bacteria by Raman microscopy: Spectral information on the chemical composition of cells and on the heterogeneity in a culture", Journal of Microbiological Methods, Vol. 42(1), 29-38, 2000.
[4] M. Harz, P. Rosch, K. D. Peschke, O. Ronneberger, H. Burkhardt and J. Popp, "Micro-Raman spectroscopic identification of bacterial cells of the genus Staphylococcus and dependence on their cultivation conditions", The Analyst, Vol. 130(11), 1543-1550, 2005.
[5] P. K. Alan Campion, "Surface-enhanced Raman scattering", Chemical Society Reviews, Vol. 27, 241-250, 1998.
[6] S. Nie and S. R. Emory, "Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering", Science, Vol. 275(5303), 1102-1106, 1997.
[7] J. Ferreira, M. J. L. Santos, M. M. Rahman, A. G. Brolo, R. Gordon, D. Sinton and E. M. Girotto, "Attomolar Protein Detection Using in-Hole Surface Plasmon Resonance", Journal of the American Chemical Society, Vol. 131(2), 436-437, 2008.
[8] Kneipp Katrin, Haka S. Abigail, Kniepp Harald, Badizadengan Kamran, Yoshizawa Noriko, Boone Charles, Shafer-peltier E. Karen, Motz T. Jason, Dasari R. Ramachandra and Feld S. Michael, "Surface-Enhance Raman Spectroscopy in Single Lining Cells Using Gold Nanoparticles", Applied spectroscopy, Vol. 56, 150-154, 2002.
[9] L. Zeiri, B. V. Bronk, Y. Shabtai, J. Czégé and S. Efrima, "Silver metal induced surface enhanced Raman of bacteria", Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 208(1-3), 357-362, 2002.
[10] M. Lin, L. He, J. Awika, L. Yang, D. R. Ledoux, H. Li and A. Mustapha, "Detection of Melamine in Gluten, Chicken Feed, and Processed Foods Using Surface Enhanced Raman Spectroscopy and HPLC", Journal of Food Science, Vol. 73(8), T129-T134, 2008.
[11] S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy and R. A. Tripp, "Rapid and Sensitive Detection of Respiratory Virus Molecular Signatures Using a Silver Nanorod Array SERS Substrate", Nano Letters, Vol. 6(11), 2630-2636, 2006.
[12] C. Fang, A. Agarwal, K. D. Buddharaju, N. M. Khalid, S. M. Salim, E. Widjaja, M. V. Garland, N. Balasubramanian and D.-L. Kwong, "DNA detection using nanostructured SERS substrates with Rhodamine B as Raman label", Biosensors and Bioelectronics, Vol. 24(2), 216-221, 2008.
[13] R. A. Tripp, R. A. Dluhy and Y. Zhao, "Novel nanostructures for SERS biosensing", Nano Today, Vol. 3(3-4), 31-37, 2007.
[14] B. Sepveda, C. Angelom Paula, L. M. Lechuga and L. M. Liz-Marz, "LSPR-based nanobiosensors", Nano Today, Vol. 4(3), 244-251, 2009.
[15] J. C. B. Richard and J. T. M. Martin, "Nanostructures and nanostructured substrates for surface enhanced Raman scattering (SERS)", Journal of Raman Spectroscopy, Vol. 39(10), 1313-1326, 2008.
[16] K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch and J. Popp, "SERS: a versatile tool in chemical and biochemical diagnostics", Analytical and Bioanalytical Chemistry, Vol. 390(1), 113-124, 2008.
[17] M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers and R. G. Nuzzo, "Nanostructured Plasmonic Sensors", Chemical Reviews, Vol. 108(2), 494-521, 2008.
[18] J. Henzie, J. E. Barton, C. L. Stender and T. W. Odom, "Large-Area Nanoscale Patterning: Chemistry Meets Fabrication", Accounts of Chemical Research, Vol. 39(4), 249-257, 2006.
[19] P. K. Alan Campion, "Surface-enhanced Raman scattering", Chemical Society Reviews, Vol. 27, 241-250, 1998.
[20] M. Moskovits, "Surface-enhanced spectroscopy", Reviews of Modern Physics, Vol. 57(3), 783, 1985.
[21] Q. Ye, J. Fang, and L. Sun, "Surface-Enhanced Raman Scattering from Functionalized Self-Assembled Monolayers. 2. Distance Dependence of Enhanced Raman Scattering from an Azobenzene Terminal Group", The Journal of Physical Chemistry B, Vol. 101(41), 8221-8224, 1997.
[22] A. Campion, J. E. Ivanecky, C. M. Child and M. Foster, "On the Mechanism of Chemical Enhancement in Surface-Enhanced Raman Scattering", Journal of the American Chemical Society, Vol. 117(47), 11807-11808, 2002.
[23] Y. C. Liu and R. L. McCreery, "Raman Spectroscopic Determination of the Structure and Orientation of Organic Monolayers Chemisorbed on Carbon Electrode Surfaces", Analytical Chemistry, Vol. 69(11), 2091-2097, 1997.
[24] J. R. Lombardi, R. L. Birke, T. Lu and J. Xu, "Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg--Teller contributions", The Journal of Chemical Physics, Vol. 84(8), 4174-4180, 1986.
[25] J. D. Driskell, R. J. Lipert and M. D. Porter, "Labeled Gold Nanoparticles Immobilized at Smooth Metallic Substrates: Systematic Investigation of Surface Plasmon Resonance and Surface-Enhanced Raman Scattering", The Journal of Physical Chemistry B, Vol. 110(35), 17444-17451, 2006.
[26] J. Parsons, E. Hendry, C. P. Burrows, B. Auguié, J. R. Sambles and W. L. Barnes, "Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays", Physical Review B, Vol. 79, 073412, 2009.
[27] Q. Yu, P. Guan, D. Qin, G. Golden and P. M. Wallace, "Inverted Size-Dependence of Surface-Enhanced Raman Scattering on Gold Nanohole and Nanodisk Arrays", Nano Letters, Vol. 8(7), 1923-1928, 2008.
[28] J. Fang, Y. Yi, B. Ding, and Xi. Song, “A route to increase the enhancement factor of surface enhanced Raman scattering (SERS) via a high density Ag flower-like pattern”, Appl. Phys. Lett. Vol. 2, 131115, 2008.
[29] Y. Du, L. Shi, T. He, X. Sun and Y. Mo, "SERS enhancement dependence on the diameter and aspect ratio of silver-nanowire array fabricated by anodic aluminium oxide template", Applied Surface Science, Vol. 255(5, Part 1), 1901-1905, 2008.
[30] Q. Liao, C. Mu, D.-S. Xu, X.-C. Ai, J.-N. Yao and J.-P. Zhang, "Gold Nanorod Arrays with Good Reproducibility for High-Performance Surface-Enhanced Raman Scattering", Langmuir, Vol. 25(8), 4708-4714, 2009.
[31] C. J. Orendorff, A. Gole, T. K. Sau and C. J. Murphy, "Surface-Enhanced Raman Spectroscopy of Self-Assembled Monolayers: Sandwich Architecture and Nanoparticle Shape Dependence", Analytical Chemistry, Vol. 77(10), 3261-3266, 2005.
[32] B Cui, L Clime, K Li and T Veres, “Fabrication of large area nanoprism arrays and their application for surface enhanced Raman spectroscopy”, Nanotechnology, Vol. 19, 145302, 2008.
[33] K. Li, L. Clime, B. Cui and T. Veres, "Surface enhanced Raman scattering on long-range ordered noble-metal nanocrescent arrays", Nanotechnology, Vol. 19(14), 145305, 2008.
[34] S. J. Lee, Z. Guan, H. Xu and M. Moskovits, "Surface-Enhanced Raman Spectroscopy and Nanogeometry: The Plasmonic Origin of SERS", The Journal of Physical Chemistry C, Vol. 111(49), 17985-17988, 2007.
[35] B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. Dal Negro and B. R. M. Reinhard, "Engineered SERS Substrates with Multiscale Signal Enhancement: Nanoparticle Cluster Arrays", ACS Nano, Vol. 3(5), 1190-1202, 2009.
[36] J. C. B. Richard and J. T. M. Martin, "Nanostructures and nanostructured substrates for surface enhanced Raman scattering (SERS)", Journal of Raman Spectroscopy, Vol. 39(10), 1313-1326, 2008.
[37] J. Biener, A. M. Hodge, J. R. Hayes, C. A. Volkert, L. A. Zepeda-Ruiz, A. V. Hamza and F. F. Abraham, "Size Effects on the Mechanical Behavior of Nanoporous Au", Nano Letters, Vol. 6(10), 2379-2382, 2006.
[38] X. Zhou, Q. Wei, K. Sun and L. Wang, "Formation of ultrafine uniform gold nanoparticles by sputtering and redeposition", Applied Physics Letters, Vol. 94(13), 133107-133103, 2009.
[39] M. R. Kagan and R. L. McCreery, "Quantitative Surface Raman Spectroscopy of Physisorbed Monolayers on Glassy Carbon", Langmuir, Vol. 11(10), 4041-4047, 2002.
[40] P. A. Mosier-Boss, S. H. Lieberman and R. Newberry, "Field Screening Methods Hazard. Wastes Toxic Chem", Proc. of Int. Symposium, Vol. 2, 1155-1162, 1995.
[41] Q. Min, M. J. L. Santos, E. M. Girotto, A. G. Brolo and R. Gordon, "Localized Raman Enhancement from a Double-Hole Nanostructure in a Metal Film", The Journal of Physical Chemistry C, Vol. 112(39), 15098-15101, 2008.
[42] 汪建民主編,「材料分析」,中國材料科學學會,73-82,1998。
[43] 謝雲生,「雷射拉曼光譜簡介」,物理雙月刊,7期1卷,25,1985。
[44] L. Richard and McCreery, “Raman Spectroscopy for chemical analysis”, New York: Wiley Interscience, Vol. 157, 2000.
[45] M. Fleischmann, P. J. Hendra and A. J. McQuillan, "Raman spectra of pyridine adsorbed at a silver electrode", Chemical Physics Letters, Vol. 26(2), 163-166, 1974.
[46] D. L. Jeanmaire and R. P. Van Duyne, "Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode", Journal of Electroanalytical Chemistry, Vol. 84(1), 1-20, 1977.
[47] M. G. Albrecht and J. A. Creighton, "Anomalously intense Raman spectra of pyridine at a silver electrode", Journal of the American Chemical Society, Vol. 99(15), 5215-5217, 2002.
[48] M. Moskovits, K. Kneipp and H. Kneipp, “Surface-Enhanced Raman Scattering: Physics and Applications” Springer, 2-40, 2006.
[49] 吳民耀,劉威志,「表面強化拉曼散射」,物理雙月刊,2期4卷,486-495,2006。
[50] A. Otto, “In Light scattering in solids IV. Electronic Scattering, Spin Effects, SERS and Morphic Effects”, Sptinger-Verlag, 289, 1984
[51] M. Moskovits, K. Kneipp and H. Kneipp, ”Surface-Enhanced Raman Scattering: Physics and Applications”, Springer , 92-93, 2006.
[52] M. C. Demirel, P. Kao, N. Malvadkar, H. Wang, X. Gong, M. Poss and D. L. Allara, "Bio-organism sensing via surface enhanced Raman spectroscopy on controlled metal/polymer nanostructured substrates", Biointerphases, Vol. 4(2), 35-41, 2009.
[53] G. C. Schatz, "Theoretical studies of surface enhanced Raman scattering", Accounts of Chemical Research, Vol. 17(10), 370-376, 1984.
[54] J. I. Gersten, “The effect of surface roughness on surface enhanced Raman scattering”, Journal of Chemical Physics, Vol. 72(10), 5779-5780, 1980.
[55] 張信之,「病毒世界:現代分子病毒學大綱」,藝軒圖書出版社,第二章,84-87,1996。
[56] Z. Movasaghi, S. Rehman, I. U. Rehman, “Raman Spectroscopy of Biological Tissues” Applied Spectroscopy Reviews, Vol. 42(5), 493-541, 2007.
[57] Dhawan, M. Gerhold and T. Vo-Dinh, "Theoretical Simulation and Focused Ion Beam Fabrication of Gold Nanostructures for Surface-Enhanced Raman Scattering (SERS)", Nanobiotechnology, Vol. 3(3), 164-171, 2007.
[58] D. G. Yu, W. C. Lin, C. H. Lin, L. M. Chang and M. C. Yang, “An in situ reduction method for preparing silver/poly (vinyl alcohol)nanocomposite as surface-enhanced Raman scattering (SERS)-active substrates,” Materials Chemistry and Physics, Vol. 101, 93-98, 2007.
[59] Z. Y. Zhang and Y. P. Zhao, "Extinction spectra and electrical field enhancement of Ag nanorods with different topologic shapes", Journal of Applied Physics, Vol. 102(11), 113308-113315, 2007.
[60] J. Fang, Y. Yi, B. Ding and X. Song, "A route to increase the enhancement factor of surface enhanced Raman scattering (SERS) via a high density Ag flower-like pattern", Applied Physics Letters, Vol. 92(13), 131115-131115-131113, 2008.
[61] W. L. Johnson, S. A. Kim, Z. N. Utegulov, J. M. Shaw and B. T. Draine, "Optimization of Arrays of Gold Nanodisks for Plasmon-Mediated Brillouin Light Scattering", The Journal of Physical Chemistry C, Vol. 113(33), 14651-14657, 2009.
[62] K. L. Kelly, E. Coronado, L. L. Zhao and G. C. Schatz, "The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment", The Journal of Physical Chemistry B, Vol. 107(3), 668-677, 2002.
[63] C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander and N. J. Halas, "Surface-Enhanced Raman Scattering from Individual Au Nanoparticles and Nanoparticle Dimer Substrates", Nano Letters, Vol. 5(8), 1569-1574, 2005.
[64] N. A. Abu Hatab, J. M. Oran and M. J. Sepaniak, "Surface-Enhanced Raman Spectroscopy Substrates Created via Electron Beam Lithography and Nanotransfer Printing", ACS Nano, Vol. 2(2), 377-385, 2008.
[65] H. Xu and M. Käll, “Estimating SERS Properties of Silver-Particle Aggregates through Generalized Mie Theory”, Springer, Vol. 103, 87-103, 2006.
[66] 陳耀茂,「實驗計畫法導論」,育友圖書有限公司,第三章,45-70,1995。