簡易檢索 / 詳目顯示

研究生: 邱彥彰
Chiu, Yen-Chang
論文名稱: 對排聚苯乙烯/石墨烯奈米複材之微結構、導電與結晶特性研究
Microstructure, electrical conductivity and crystalline properties of syndiotactic polystyrene/graphene nanocomposites
指導教授: 王紀
Wang, Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 138
中文關鍵詞: 對排聚苯乙烯石墨稀奈米複材
外文關鍵詞: syndiotactic polystyrene, graphene, nanocomposites
相關次數: 點閱:74下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對排聚苯乙烯(syndiotactic polystyrene,sPS),具有結晶快、高熔點以及機械性質佳等性質,是一種受到重視的工程塑膠。石墨烯為單層且具sp2二維結構的材料,導電性質優異且有良好的機械性質與熱傳導性。本研究將sPS與厚度約為1奈米(G1)與10奈米(G10)的石墨烯混摻製備成奈米複材,並研究其結晶行為、微結構、導電性。

    SEM、TEM、AFM結果顯示,G1為充滿皺褶的片狀物,真實厚度小於2 nm,而G10為表面較為平滑的片狀物,真實厚度小於50 nm,此兩種石墨烯在溶劑中經超音波震盪處理後,橫向尺寸變小。由Raman光譜可知出純G1粉末比G10有更多的缺陷與sp3結構。

    WAXD顯示,複材經melt quench熱處理會誘導sPS的晶型產生,試片切片後TEM影像可看出複材內條紋狀的sPS lamella,且G1在基材中分散較佳。Melt-quenched複材動態升降溫DSC結果顯示,石墨烯的摻入會使得複材冷結晶峰溫度變低、熔融結晶峰溫度升高,幫助sPS更容易結晶。等溫結晶動力學顯示石墨烯會降低sPS的Avrami 指數,並使整體結晶速率變快,且G10比G1提升結晶的效果較明顯。經由溶劑處理析出的sPS粉末其冷結晶會較原始sPS顆粒提早發生。

    導電度量測結果顯示sPS/G1複材之導電percolation threshold為0.46 vol%,而sPS/G10複材之值為3.84 vol%,可知sPS/G1複材只需較少的石墨烯就能形成導電網路。

    Syndiotactic polystyrene (sPS) possesses some unique properties, including high crystallization rate, high melting temperature and good mechanical strength. It is a noticeable engineering plastic. Graphene is a single layer material with sp2 2D structure, making graphene as a material with great mechanical ,electrical and thermal conductivity properties. In this research, we blend sPS and grapehene whith thickness of about 1 nm (G1) or 10 nm (G10) by a coagulation method to prepare nanocomposites. The microstructure, crystallization behavior and electrical properties of the as-prepared nanocomposites are studied..

    SEM, TEM and AFM results show that G1 is a wrinkled flake and its real thickness is less than 2 nm. G10 is a sheet with a smoother surfacre and its real thickness is less than 50 nm. The lateral sizes of these two kinds of graphene are reduced after sonication in o-DCB solution. Raman spectra reveal that G1 powders have more defects and sp3 structure than G10 powders.

    WAXD results show that melt-quenched nanocomposites produce the-form crystal of sPS. TEM results of the microtomed sample reveal that some striped lamella are developed in these melt-quenched nanocomposites and G1 fillers disperse more well in the sPS matrix.

    Dynamic heating and cooling of DSC results show that the addition of graphene decreases the cold crystallization temperature and increases the melt crystallization temperature of melt-quenched samples. Addition of graphene declines the Avrami exponent and increases the overall crystallization rate of sPS. The cold crystallization peak of sPS coagulation powders is lower than that of the original sPS pellets.

    From the electrical conductivity measurement, the percolation threshold of sPG/G1 composite is 0.46 vol%, and sPS/G10 is 3.84 vol%. Compared to the G10 fillers, lower G1 content is to form a conductivity network.

    中文摘要 i Abstract ii 誌謝 iv 目錄 vi 表目錄 ix 圖目錄 x 符號 xiv 一、前言 1 二、簡介 2 三、文獻回顧 3 3.1對排聚苯乙烯 3 3.2石墨烯特性 5 3.3石墨烯製備方法 6 3.3.1 經GICs製備石墨烯 6 3.3.2 經GO製備石墨烯 7 3.4石墨烯填充高分子複材 8 3.5石墨烯-高分子複材結晶行為 10 3.6石墨烯-高分子複材導電行為 11 四、理論 20 4.1平衡熔點 20 4.2結晶動力學 20 4.3 WAXD結晶度量測 23 4.4四點探針原理 24 五、實驗 31 5.1實驗藥品 31 5.2實驗器材與儀器 32 5.3實驗步驟 35 5.3.1 樣品製備 35 5.3.2 melt-quenched樣品製備 35 5.3.3 廣角X光繞射儀 35 5.3.4 示差掃描卡計 36 5.3.5 穿透式電子顯微鏡 37 5.3.6 導電度測試 39 5.3.7 拉曼光譜 40 5.3.8 AFM 40 5.3.9 SEM 40 六、結果與討論 45 6.1石墨烯外觀形態研究 45 6.1.1 SEM觀察石墨烯粉末外觀形態 45 6.1.2 Raman光譜探討石墨烯的結構與性質 45 6.1.3 TEM探討分散在o-DCB之石墨烯經超音波震盪後的外觀形態 46 6.1.4 AFM掃描分散在o-DCB之石墨烯經超音波震盪過後的薄片厚度 47 6.2 FTIR分析複材微結構 48 6.3 melt-quenched複材微結構研究 49 6.4動態結晶研究 50 6.4.1 DSC第一次升溫 51 6.4.2 降溫 53 6.4.3 第二次升溫 54 6.5等溫結晶研究 54 6.6複材導電行為研究 57 6.7 sPS顆粒與析出粉末結晶行為比較 60 6.7.1 DSC動態結晶 60 6.7.2 DSC進行等溫結晶 60 七、結論 121 八、參考文獻 122 九、附錄 132   表目錄 表3-1、CNC、CNT、與graphene物性分析比較表 12 表4-1、n值的意義 27 表4-2、四點探針電阻率公式之修正因子 28 表5- 1、與晶型平面在廣角X光繞射儀所對應的角度表 41 表5- 2、與晶型sPS在廣角X光繞射儀所對應的角度表 42 表6-1、melt-quenched複材動態結晶第一次升溫數據表 61 表6-2、melt-quenched複材動態結晶降溫數據表 62 表6-3、melt-quenched複材動態結晶第二次升溫數據表 63 表6-4、sPS/graphene複材等溫結晶tpeak值 64 表6-5、sPS/graphene複材等溫結晶HcG值 65 表6-6、sPS/graphene複材等溫結晶lnk值 66 表6-7、sPS/graphene複材等溫結晶n值 67 表6-8、sPS/G1複材等溫結晶後升溫熔融Tm值 68 表6-9、sPS/G10複材等溫結晶後升溫熔融Tm值 69 表6-10、sPS/graphene複材等溫結晶後升溫熔融HmG值 70 表6-11、sPS/graphene複材熱壓成薄膜後,以高阻計測量之結果 71 表6-12、不同重量分率sPS/graphene複材熱壓成薄膜後,以四點探針測量導電度 72   圖目錄 圖3-1、聚苯乙烯立體異構物之分子結構示意圖 13 圖3-2、sPS的四種晶型結構圖 14 圖3-3、(a)CNC、(b)CNT、與(c)graphene 三種不同奈米碳材形態示意圖 15 圖3-4、藉由KOH溶液修飾的化學還原法將堆疊的石墨結構剝離並製備 16 圖3-5、(a)未剝離之石墨型態(b)使用熔體混合法之TEGO形態(c) 使用溶液混合法之TEGO形態 (d) 使用原位聚合法之TEGO形態 17 圖3-6、奈米黏土複材存在三種分散的形態 18 圖3-7、將PS填充isocyanates改質後的rGO所得複材之導電度對體積分 19 圖4-1、WAXD結晶度計算示意圖 29 圖4-2、四點探針示意圖 30 圖5-1、sPS/graphene複材製備過程之流程圖 43 圖5-2、(a) sPS/G1,(b)sPS/G10 複材外觀 44 圖6-1、以SEM觀察 (a) G1粉末,(b) G10粉末的外觀形態 73 圖6-2、(a) G1粉末與,(b) G10粉末之Raman光譜圖 74 圖6-3、以TEM觀察G1在o-DCB中經超音波震盪 (a) 3 hr,(b) 10 min 之結構比較圖 75 圖6-4、以TEM觀察G10 在o-DCB中經超音波震盪 (a) 3 hr,(b) 10 min之結構比較圖 76 圖6-5、G1經超音波震盪 (a) 10 min,(b) 3 hr 之AFM比較圖 77 圖6-6、G10經超音波震盪 (a) 10 min,(b) 3 hr 之AFM比較圖 78 圖6-7、純sPS經溶劑析出粉末,於真空烘箱中去除溶劑不同天數後之FTIR結果 79 圖6-8、sPS/G1複材之FTIR測試 80 圖6-9、melt-quenched sPS/G1=99/1複材之TEM影像 (未染色) 81 圖6-10、melt-quenched sPS/G1=99/10 複材之TEM影像 (未染色) 82 圖6-11、melt-quenched sPS/G1=95/5複材之TEM影像 (未染色) 83 圖6-12、melt-quenched sPS/G10=95/5複材之TEM影像 (未染色) 84 圖6-13、melt-quenched (a)sPS/G1,(b) sPS/G10 複材之DSC動態結晶第一次升溫曲線 85 圖6-14、sPS/graphene複材之動態結晶第一次升溫Tg對石墨烯含量作圖 86 圖6-15、sPS/graphene複材之動態結晶第一次升溫Tp,cc對石墨烯含量作圖 87 圖6-16、sPS/graphene複材之動態結晶第一次升溫曲線Hcc/(1-w) 對graphene含量作圖 88 圖6-17、melt-quenched (a) sPS/G1,(b) sPS/G10複材之WAXD圖 89 圖6-18、melt-quenched sPS/G1=99/1複材之TEM影像 (染色) 90 圖6-19、melt-quenched sPS/G10=99/1 複材之TEM影像 (染色) 91 圖6-20、melt-quenched sPS/graphene複材之結晶度對重量分率作圖 92 圖6-21、melt-quenched (a) sPS/G1,(b) sPS/G10 複材之DSC動態結晶降溫曲線 93 圖6-22、sPS/Graphene複材之動態結晶降溫曲線Tp,mc對石墨烯含量作圖 94 圖6-23、sPS/graphene複之動態結晶之降溫曲線Hmc/(1-w) 對石墨烯含量作圖 95 圖6-24、melt-quenched (a) sPS/G1,(b) sPS/G10複材之DSC動態結晶第二次升溫曲線 96 圖6-25、sPS/graphene複材之動態結晶第二次升溫曲線Tg對石墨烯含量作圖 97 圖6-26、sPS/G1=99.5/0.5複材於不同溫度下之等溫結晶圖 98 圖6-27、sPS/G1=99.5/0.5複材於不同溫度下之Avrami plot 99 圖6-28、sPS/G1複材於Tc = 256 oC下之等溫結晶圖 100 圖6-29、sPS/G1複材於Tc = 256 oC下之Avrami plot 101 圖6-30、sPS/G1與sPS/G10複材之lnk對Tc作圖 102 圖6-31、sPS/G1與sPS/G10複材之n值對Tc作圖 103 圖6-32、sPS/G1=99/1複材等溫結晶後之升溫熔化曲線圖 104 圖6-33、sPS/G1複材於Tc = 256 oC等溫結晶後之升溫熔化曲線圖 105 圖6-34、(a) sPS/G1,(b) sPS/G10複材之Tm對Tc作圖 106 圖6-35、sPS/graphene複材熱壓薄膜之(a)導電度對重量分率作圖,(b)導電度對體積分率作圖 107 圖6-36、melt-quenched (a) sPS/G1 = 95/5,(b) sPS/G10 = 95/5複材於同一倍率下之TEM影像(未染色) 108 圖6-37、(a) sPS/G1,(b ) sPS/G10之最小平方對體積分率作圖 109 圖6-38、(a) sPS/graphene熱壓薄膜之percolation threshold計算,(b)將c與帶回percolation scaling law,換算回導電度理論值對體積分率作圖,並與導電度實驗值作比較 110 圖6-39、(a)純sPS,(b)sPS/G1 = 95/5,(c) sPS/G10 = 95/5 熱壓薄膜Raman光譜 111 圖6-40、sPS顆粒與經溶劑析出sPS粉末經melt quench 熱處理後之動態結晶第一次升溫曲線 112 圖6-41、純sPS顆粒與經溶劑析出sPS粉末經melt-quenched熱處理後之動態結晶降溫曲線 113 圖6-42、純sPS顆粒與經溶劑析出sPS粉末經melt-quenched 熱處理後之動態結晶第二次升溫曲線 114 圖6-43、(a) 純sPS顆粒,(b)經溶劑析出sPS粉末於不同溫度下之等溫結晶圖 115 圖6-44、(a)純sPS顆粒與,(b)經溶劑析出sPS粉末之Avrami plot 116 圖6-45、sPS顆粒與經溶劑析出sPS粉末之lnk對Tc作圖 117 圖6-46、sPS顆粒與經溶劑析出sPS粉末之n值對Tc作圖 118 圖6-47、(a) sPS顆粒,,(b) sPS析出粉末等溫結晶後之升溫熔化曲線圖 119 圖6-48、sPS顆粒與經溶劑析出sPS粉末之Tm對Tc作圖比較 120

    [1] J. Natta, “Une nouvelle classe de polymeres d’-olefines ayantune rkgularité de
    structure exceptionnelle”, J. Polym. Sci. 16, 143 (1955).
    [2] N. Ishihara, T. Seimiya, M. Kuramoto, M. Uoi, “Crystalline syndiotactic polystyrene”, Macromolecules 19, 2464 (1986).
    [3] 吳中仁, “s-PS之特性與應用”, 化工資訊 12 (1996).
    [4] 劉士榮, 高分子流變學, 滄海 (2005).
    [5] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “ Electric field effect in atomically thin carbon films”, Science 306, 666 (2004).
    [6] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, B. H. Hong, “ Large-scale pattern growth of graphene films for stretchable transparent electrodes”, Nature 457, 706 (2009).
    [7] Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, ”Graphene and graphene oxide: synthesis, properties, and applications”, Adv. Mater. 22, 3906 (2010).
    [8] A.K. Geim,K.S. Novoselov, ” The rise of graphene”, Nat. Mater. 6,183 (2007).
    [9] O.C. Compton, S.T. Nguyen, “ Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials”, Small 6, 711 (2010).
    [10] O. Gries, Y. Xu, T. Asano, J. Petermann, “Morphology and structure of syndiotactic polystyrene”, Polymer 30, 590 (1989).
    [11] C. De Rosa, G. Guerra, V. Petraccone, P. Corradini, “Crystal structure of the -form of syndiotactic polystyrene”, Polym. J. 23, 1435 (1991).
    [12] Y. Chatani, Y. Fujii, Y. Shimane, T. Ijitsu, Polym. Prepr. Jpn. (Engl. Ed.) 37, E428 (1988).
    [13] C. De Rosa, M. Rapacciuolo, G. Guerra, V. Petraccone, P. Corradini, “On the
    crystal structure of the orthorhombic form of syndiotactic polystyrene”, Polymer
    33, 1423 (1992).
    [14] C. De Rosa, G. Guerra, P. Corradini, Rend. Fis. Acc. Lincei 2, 227 (1991).
    [15] A. M. Evans, E. J. C. Kellar, J. Knowles, C . Galiotis, C. J.Carriere and E. H. Andrews, “The structure and morphology of syndiotactic polystyrene injection molded coupons”, Polym. Eng. Sci. 37, 153 (1997).
    [16] S. Rastogi, J. G. P. Goossens, P. J. Lemstra, “An in situSAXS/WAXS/Raman spectroscopy study on the phase behavior ofsyndiotactic polystyrene(sPS)/solvent systems: compound formation andsolvent (dis)ordering”, Macromolecules 31, 2983 (1998).
    [17] G. Guerra, V. M. Vitagliano, C. De Rosa, V. Petraccone, P. Corradini, “Polymorphism in melt crystallized syndiotactic polystyrene samples”, Macromolecules 23, 1539 (1990).
    [18] H. D. Wu, I. D. Wu, F. C. Chang, “Characterization of crystallization in syndiotactic polystyrene thin film samples”, Macromolecule 33, 8915 (2000).
    [19] H. D. Wu, S. C. Wu, I. D. Wu, F. C. Chang, “Novel determination of the crystallinity of syndiotactic polystyrene using FTIR spectrum”, Polymer 42, 4719 (2001).
    [20] B. K. Hong, W. H. Jo, S. C. Lee, J. Kim, “Correlation between melting behaviour and polymorphism of syndiotactic polystyrene and its blend with poly(2,6-dimethyl-l,4-phenylene oxide)”, Polymer 39, 1793 (1998).
    [21] J. Arnauts, H. Berghmans, “Equilibrium melting behavior of syndiotactic polystyrene”, Polym. Commun. 31, 343 (1990).
    [22] E. M. Woo, F. S. Wu, “On the multiple melting behavior of polymorphic syndiotactic polystyrene and its behavior in a miscible state”, Macromol. Chem. Phys. 199, 2041 (1998).
    [23] N. V. Gvozdic, D. J. Meier, “On the melting temperature of syndiotactic polystyrene”, Polym. Commun. 32, 183 (1991).
    [24] N. V. Gvozdic, D. J. Meier, “On the melting temperature of syndiotactic polystyrene: 2. Enhancement of the melting temperature of semicrystalline polymers by a novel annealing procedure”, Polym. Commun. 32, 493 (1991).
    [25] C. Wang, Y. C. Hsu, C. F. Lo, “Melting behavior and equilibrium melting temperatures of syndiotactic polystyrene in and crystalline forms”, Polymer 42, 8447 (2001).
    [26] C. Lee, X. Wei, J. W. Kysar, J. Hone, “ Measurement of the elastic properties and intrinsic strength of monolayer graphene”, Science 321, 385 (2008).
    [27] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, “ Modification of graphene properties due to electron-beam irradiation”, Nano Lett. 8, 902 (2008).
    [28] S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. alandin, W. Bao, F. Miao, C. N. Lau, “Thermal conductivity of graphene flakes: Comparison with bulk graphite”, Appl. Phys. Lett. 92, 151911 (2008).
    [29] X. Wang, H. You, F. Liu, M. Li, L. Wan, S. Li, Q. Li, Y. Xu, R. Tian, Z. Yu, D. Xiang, J. Cheng, “ Large-scale synthesis of few-layered graphene using CVD”, Vapor Deposition 15, 53 (2009).
    [30] N. Li, Z. Wang, K. Zhao, Z. Shi, Z. Gu, S. Xu, “ Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method”, Carbon 48, 255 (2010).
    [31] E. Rollings, G. Gweon, S. Y. Zhou, B. S. Mun, J.L. McChesney, B. S. Hussain, A. V. Fedorov, P. N. First, W. A. de Heer, A. Lanzar, ”Sythesis and chatcterization of automically thin graphite films on a silicon carbide subtrate”, J. Phys. Chem. Solids 67, 2172 (2006).
    [32] W. Zhang, J. Cui, C. Tao, Y. Wu, Z. Li, L. Ma, Y. Wen, G. Li, ”A strategy for producing pure single-layer graphene sheets based on a confined self-assembly approach”, Angew. Chem. Int. Ed. 48, 5864 (2009).
    [33] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, ”Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide”, Carbon 45, 1558 (2007).
    [34] H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R. K. Prud’homme, R. Car, D. A. Saville, I. A. Aksay, ”Functionalized single graphene sheets derived from splitting graphite oxide”, J. Phys. Chem.B 110, 8535 (2006).
    [35] N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang, ”One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite”, J. Adv. Funct.Mater. 18, 1518 (2008).
    [36] A. B. Bourlinos, V. Georgakilas, R. Zboril, T. A. Steriotis, A. Stubos, “Liquid-phase exfoliation of graphite towards solubilized graphenes”, Small 5, 1841 (2009).
    [37] W. Scholz, H. P. Boehm, Z. Anorg. Allg. Chem., 369, 327–40(1969).
    [38] L. M. Viculis, J. J. Mack, O. M. Mayer, H. T. Hahn, R. B. Kaner,”Intercalation and exfoliation routes to graphite nanoplatelets”, J. Mater. Chem. 15, 974 (2005).
    [39] K. E. Carr, ”Intercalation and oxidation effects on graphite of a mixture of sulphuric and nitric acids”, Carbon 8, 155 (1970).
    [40] H. Fukushima, Ph.D. Thesis, ”Graphite nanoreinforcements in polymer nanocomposites”, Michigan State University (2003).
    [41] W. S. Hummers, R. E. Offernan, ” Preparation of graphitic oxide”, J. Am. Chem. Soc. 80, 1339 (1958).
    [42] A. Buchstriner, A. Lerf, J. A. Pieper,” Water dynamics in graphite oxide investigated with neutron scattering”, J. Phys. Chem. B 110, 22328 (2006).
    [43] M. J. McAllister, J. L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, D. L. Milius, R. Car, R. K. Prud’homme, I. A. Aksay, ” Single sheet functionalized graphene by oxidation and thermal expansion of graphite”, Chem. Mater. 19, 4396 (2007).
    [44] S. Park, R. S. Ruoff, ”Chemical methods for the production of graphenes”, Nat. Nanotechnol 5, 217 (2009).
    [45] D. R. Dreyer, S. Murali, Y. Zhu, R. S. Ruoff, C. W. Bielawski, “ Reduction of graphite oxide using alcohols”, J. M. Chem. 21, 3443 (2011).
    [46] J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo,” Reduction of graphene oxide via L-ascorbic acidw”, Chem. Commun. 46, 1112 (2010).
    [47] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E.J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, ” Graphene-based composite materials”, Nature 442, 282 (2006).
    [48] S. Park, J. An, R. D. Piner, I. Jung, D. Yang, A. Velamakanni, S. T. Nguyen, R. S. Ruoff, “ Aqueous suspension and characterization of chemically modified graphene sheets”, Chem. Mater. 20, 6592 (2008).
    [49] Y. Gao, J. Feng, P. Wu, ” Preparation of organically dispersible graphene nanosheet powders through a lyophilization method and their poly(lacticacid) composites”, Carbon 48, 3834 (2010).
    [50] F. Gubbels, R. Jérôme, Ph. Teyssié, E. Vanlathem, R. Deltour, A.Calderone, V. Parenté, J. L. Brédas, “Selective localization of carbon black in immiscible polymer blends: A useful tool to design electrical conductive composites”, Macromolecules 27, 1972 (1994).
    [51] F. Gubbels, S. Blacher, E. Vanlathem, R. Jérôme, J R. Deltour, F.Brouers, Ph. Teyssié, “Design of electrical conductive composites: Key role of the morphology on the electrical properties of carbon black filled polymer blends”, Macromolecules 28, 1559 (1995).
    [52] H. Kim, Y. Miura, C. W. Macosko, ” Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity”, Chem.Mater. 22,3441 (2010).
    [53] S. Ansari, E. P. Giannelis, ”Functionalized graphene sheet—poly(vinylidene fluoride) conductive nanocomposites”, Polym. Phy. 47, 888 (2009).
    [54] H. B. Zhang, W.G. Zheng, Q. Yan, Y. Yang, J. W. Wang, Z. H. Lu, ” Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding”, Polymer 51, 1191 (2005).
    [55] I. H. Kim, Y. G. Jeong, “ Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, electrical conductivity”, J. Polym. Sci. Part B Polym. Phys. 48, 850 (2010).
    [56] K. Kalaitzidou, H. Fukushima, L. T. Drzal, ” Mechanical properties and morphological characterization of exfoliated graphite–polypropylene nanocomposites”, Compos. Part A Appl. Sci. Manuf. 38 , 1675 (2007).
    [57] H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, ”Oxygen-driven unzipping of graphitic materials”, J. Phys. Chem. B 110, 8535 (2006).
    [58] H. Shioyama, ”Polymerization of isoprene and styrene in the interlayer spacing of graphite”, Carbon 35 , 1664 (1997).
    [59] Y. X. Pan, Z. Z. Yu, Y. C. Ou, G. H. Hu, ” A new process of fabricating electrically conducting nylon 6/graphite nanocomposites via intercalation polymerization”, J. Polym. Sci. Part B Polym. Phys. 38, 1626 (2000).
    [60] F. C. Fim, J. M. Guterres, N. R. S. Basso, G. B. Galland, ” Polyethylene/graphite nanocomposites obtained by in situ polymerization”, J. Polym. Sci. Part A Polym. Chem. 48, 692 (2010).
    [61] J.Y. Jang, M. S. Kim, H. M. Jeong, C. M. Shin, “Graphite oxide/poly(methyl methacrylate) nanocomposites prepared by a novel method utilizing macroazoinitiator”, Compos. Sci. Technol. 69, 186 (2009).
    [62] H. Kim, Y. Miura, C. W. Macosko, ” Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity”, Chem. Mater. 22, 3441 (2010).
    [63] M. Alexandre, P. Dubois, “Polymer-layered silicate nanocomposites: preparation, propertiesand uses of a new class of materials”, Mater. Sci. Eng. R. Rep. 28, 1 (2000).
    [64] L. S. Schadler, L. C. Brinson, W. G. Sawyer, J. Miner. Met. Mater. Soc., 59, 53 (2007).
    [65] J. J. Liang, Y. Huang, L. Zhang, Y. Wang, Y. F. Ma, T. Y. Guo, “Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites”, Adv. Funct. Mater. 19, 2297 (2009).
    [66] D. Y. Cai, M. Song, “A simple route to enhance the interfacebetween graphite oxide nanoplatelets and a semi-crystalline polymer for stresstransfer”, Nanotechnology 20, 315708 (2009).
    [67] S. Ansari, A. Kelarakis, L. Estevez, E. P. Giannelis, “Oriented arrays of graphene in a polymer matrix by in situ reduction of graphite oxide nanosheets”, Small 6,205 (2010).
    [68] W. Zheng, X. Lu, S. C. Wong, “Electrical and mechanical properties of expanded
    graphite-reinforced high-density polyethylene”, J. Appl. Polym. Sci. 91, 2781 (2004).
    [69] X. Yang, L. Li, S. Shang, X. M. Tao, “Synthesis and characterization of layer-aligned poly(vinyl alcohol)/graphene nanocomposites”, Polymer 51, 3431 (2010).
    [70] S. Ansari, E. P. Giannelis, “Functionalized graphene sheet—poly(vinylidene fluoride) conductive nanocomposites”, J. Polym. Sci., Polym. Phys. Ed. 47, 888 (2009).
    [71] J. Z. Xu, T. Chen, C. L. Yang, Z. M. Li, Y. M. Mao, B. Q. Zeng, “Dopamine-induced reduction and functionalization of graphene oxide nanosheets”, macromolecules 43,5000 (2010).
    [72] S. Cheng, X. Chen, Y. G. Hsuan, C. Y. Li, “Reduced graphene oxide-induced polyethylene crystallization in Solution and nanocomposites”, Macromolecules 45, 993(2012).
    [73] D. U. Fangming, R. C. Scogna, W. Zhou, S. Brand, J. E. Fischer, K. I. Winey, “Nanotube networks in polymer nanocomposites: rheology and electrical conductivity”, Macromolecules 37, 9048 (2004).
    [74] P. Pötschke, M. Abdel-Goad, I. Alig, S. Dudkin, D. Lellinger, “Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites”, Polymer 45, 8863 (2004).
    [75] H. Kim, C. W. Macosko, ” Processing-property relationships of polycarbonate/graphene composites”, Polymer 50, 3797 (2009).
    [76] J. D. Hoffman, J. J. Weeks, “Melting process and the equilibrium melting temperature of polychlorotrifluoroethylene”, J. Res. Natl. Bur. Stand. (U.S.), A66,
    16 (1962).
    [77] M. Avrami, “Kinetics of phase change. I General theory”, J. Chem. Phys. 7, 1103 (1939).
    [78] M. Avrami, “Kinetics of phase change. II Transformation-time relationsfor random distribution of nuclei”, J. Chem. Phys. 8, 212 (1939).
    [79] J. Weliy, I. Sons, “Avrami analysis: Three experimental limitingfactors”,
    J. Polym. Sci. Polym. Phys. Ed. 18, 1655 (1980).
    [80] L. H. Sperling, “Introduction to physical polymer science”, Wiley-Interscience, New York (1986).
    [81] F. J. Balta-Calleja, C. G. Vonk, “X-ray scattering of synthetic polymers”, Elserier, New York (1989).
    [82] H. Kim, A. A. Abdala, C. W. Macosko, ”Graphene/polymer nanocomposites”, Macrmolecules 43, 6515 (2010).
    [83] H.C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prud'homme, R. Car, D. A. Saville, I. A. Aksay, “Functionalized single graphene sheets derived from splitting graphite oxide”, J. Phys. Chem. B. 110, 8535 (2006).
    [84] G. Guerra, V. M. Vitagliano, C. De Rosa, V. Petraccone, P. Corradini, “Polymorphism in melt crystallized syndiotactic polystyrene samples”, Macromolecules 23, 1539 (1990).
    [85] G. Guerra, V. M. Vitagliano, C. De Rosa, V. Petraccone, P. Corradini, “Polymorphism in melt crystallized syndiotactic polystyrene samples”, Macromolecules 23, 1539 (1990).
    [86] B. Z. Jang, A. A. Zhamu, ”Processing of nanographene platelets (NGPs) and NGP
    nanocomposites: a review”, J. Mater. Sci. 43, 5092 (2008).
    [87] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim, “Raman spectrum of graphene and graphene layers”, Phys. Rev. Lett. 97, 187401 (2006).
    [88] G. Srinivas, Y. Zhu, R. Piner, N. Skipper, M. Ellerby, R. Ruoff, “Synthesis of graphene-like nanosheets and their hydrogen adsorption capacity”, Carbon 48, 630 (2010).
    [89] D. W. Schaefer, R. S. Justice, ” How nano are nanocomposites?”, Macromolecules 40, 8501 (2007).
    [90] I. Balberg, “Tunneling and nonuniversal conductivity in comoposites materials”, Phys Rev Lett 59, 1305 (1987).
    [91] X. Wu, S. Qi, J. He, G. Duan, ”High conductivity and low percolation threshold in polyaniline/graphite nanosheets composites” J. Mater. Sci. 45, 483 (2010).
    [92] H. Pang, T. Chen, G. Zhang, B. Zeng, Z. M. Li, ”An electrically conducting polymer/graphene composite with a very low percolation threshold”, Mater. Lett. 64, 2226 (2010).
    [93] M. Yoonessi, J. R. Gaier, “Highly conductive multifunctional graphene polycarbonate nanocomposites”, ACS Nano 4, 7211 (2010).
    [94] J. Lianga, Y. Wanga, Y. Huanga, Y. Maa, Z. Liua, J. Caib, C. Zhangb, H. Gaob, Y. Chen, “Electromagnetic interference shielding of graphene/epoxy composites”, Carbon 47, 922 (2009).
    [95] Z. H. Ni, W. Chen, X. F. Fan, J. L. Kuo, T. Yu, A. T. S. Wee, Z. X. Shen, “Raman spectroscopy of epitaxial graphene on a SiC substrate”, Phys. Rev. B 77, 115416 (2008).
    [96] K. Kalaitzidou, H. Fukushima, L. T. Drzal, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions”, Carbon 45, 1446 (2007).
    [97] M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water Solutions”, J. Am. Chem. Soc. 131, 3611 (2009).
    [98] X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, H. Dai, ”Highly conducting graphene sheets and Langmuir–Blodgett films”, Nat. Nanotechnol. 3, 538 (2008).
    [99] C. L. Huang, C. Wang, “Polymorphism and transcrystallization of syndiotactic polystyrene composites filled with carbon nanotubes”, Euro. Polym. J. 47, 2087 (2011).

    下載圖示 校內:2017-08-13公開
    校外:2017-08-13公開
    QR CODE