| 研究生: |
林唐筠 Lin, Tang-Yun |
|---|---|
| 論文名稱: |
超臨界二氧化碳環境下添加不同鈣矽比摻料對套管水泥力學、物理與化學性質之研究 A Study of the Mechanical, Physical and Chemical Properties of API G well Cement with CaO and Different SiO2 Admixtures Exposed to Supercritical CO2 Environment. |
| 指導教授: |
王建力
Wang, Chein-Lee |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | API-G 水泥 、氧化鈣 、二氧化矽 、超臨界二氧化碳 、碳酸化 |
| 外文關鍵詞: | API Class G, CaO, SiO2, supercritical CO2, carbonation |
| 相關次數: | 點閱:140 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二氧化碳捕獲與封存是目前公認最有效的減碳技術之一,台灣西部濱海深部鹽水層具有百億噸以上龐大的封存潛能。但封存場址處於高溫、高壓且潮濕環境下,注入的二氧化碳會與水反應形成碳酸,影響隔離套管與井孔岩壁的套管水泥(API-G 水泥)並產生碳酸化反應,使得水泥材料的力學性質降低,進而造成二氧化碳洩漏,縮短有效封存的時間。
因此本研究針對上述情形規劃對套管水泥(API-G 水泥)及添加不同配比之氧化鈣與二氧化矽之套管水泥進行試驗。 試驗規劃分成水泥漿體及水泥塊體,水泥塊體置入模擬井底高溫高壓環境(45°C、25MPa之超臨界二氧化碳溶於去離子水),觀察經過不同反應時間(未反應、7、14、28、56、84 天)之物理、化學及微觀性質變化。研究結果發現在API-G水泥中添加5wt.%SiO2,會使鈣矽比明顯降低,矽原子分布較均勻,而微觀結構產生許多白色微小的矽晶體,此晶體能堆積填補孔隙使其結構更加緻密,增強水泥強度並降低透性,有較佳之防止水泥碳化而弱化之能力。
Carbon capture and storage (CCS) is regarded as one of the most effective carbon reduction technologies. Deep saline aquifers in the coast of western Taiwan have the potential for storing more than 10 billion tons of CO2. However, the storage site is exposed to high temperatures and pressures. Consequently, Injection of CO2 which reacts with water to form carbonic acid, results in the carbonation of the insulating casings as well as casing cement (API Class G) on the borehole. This reduces the mechanical properties of the cement material, thereby causing CO2 leakage and shortening storage time.
Therefore, this study proposes to carry a series of tests to the casing cement (API-G cement) and the additions of different proportions of calcium oxide and silica to casing cement (under a supercritical carbon dioxide dissolved in deionized water environment of 45°C and 25 MPa). The changes of physical, chemical and microscopic properties were observed after different reaction time (unreacted, 7, 14,28,56,84 days). The results show that the addition of 5wt. % SiO2 in API-G cement will make a significant reduction in the ratio of calcite to silicon, and a relatively uniform distribution of silicon atoms. Many tiny white silicon crystals produced in microstructures can fill the pores to make the structure denser, and enhance the strength of cement and reduce the permeability, preventing the cement carbonization in a better way.
[1] 江健豪,「超臨界二氧化碳環境下對套管水泥力學與物化性質之影響」, 國立成功大學資源工程研究所碩士論文,2012。
[2] 李小春、小出仁、大隅多加志,「二氧化碳地中隔離技術及其岩石力學問題」,岩石力學與工程學報,22(6),2003。
[3] 李冠穎,「二氧化碳環境下對油井水泥物理性質及化學性質之影響」,國立成功大學資源工程研究所碩士論文,2011。
[4] 呂斌,侯立偉等人,「新型奈米油井水泥漿體系的試內研究 」,鑽井液與完井液期刊,第 27 卷,第 4 期,2010。
[5] 林振國,「二氧化碳的儲存」,科學發展,第413期,第28~33頁,2007。
[6] 周明芳,倪紅堅,「顆粒級配增強低密度油井水泥的實驗研究」,鑽採工藝期刊,第 29 卷,第 6 期,2006。
[7] 翁豐源、湯純雄,「鑽採試驗」,中國石油學會,1962。
[8] 陳金土、邱金水等人,「鑽採工程材料手冊:第八篇─套管與下水泥工程」,中油股份有限公司台灣油礦探勘總處,1987。
[9] 陳金土、邱金水等人, 「鑽採工程材料手冊:第六之三篇─泥漿循環系統」,中油股份有限公司台灣油礦探勘總處,1987。
[10] 陳思螢,2012,「超臨界二氧化碳環境下對套管水泥斷裂韌度影響之研究」,國立成功大學資源工程研究所碩士論文。
[11] 陳宏銓,2014,「超臨界二氧化碳環境下對添加矽酸化合物套管 水泥性質之研究」,國立成功大學資源工程研究所碩士論文。
[12] 張育源,2014,「超臨界二氧化碳環境不同溫度下 API G 級水泥 力學性質之研究」,國立成功大學資源工程研究所專題論文。
[13] 郭俊志,「二氧化碳封存環境下對封固材料基本性質影響之研究」,國立成功大學資源工程研究所博士論文,2015。
[14] 楊昀叡,「二氧化碳環境下纖維摻料對套管水泥性質之研究」,國立成功大學資源工程研究所碩士論文,2011。
[15] 劉浙仁、譚志豪、冀樹勇,「臺灣發展二氧化碳地質封存之場址評選策略研議」,中興工程131期,Pages 19-28, 2016。
[16] 鮮明,李然等人,「固井水泥車載密度計原理分析」,傳感器世界期刊,弟18卷,弟9期,2012。
[17] 謝欣婷,「超臨界二氧化碳環境下對添加 碳化矽套管水泥力學與物化性質之研究」,國立成功大學資源工程研究所碩士論文,2016。
[18] 鐘翊珊,「二氧化碳封存機制下對岩石力學性質之影響」,國立成功大學資源工程研究所碩士論文,2011。
[19] American Petroleum Institute(API), “Recommended practice for testing well cements,” API Recommended Practice 10B. Washington DC , 1985.
[20] Andrew, G., K. J. Jung, R. K. Muhammad, R. T. M. Mahmoud, M. ASCE, “Microstructure of a type G oil well cement-nanosilica blend,” Journal of Materials in Civil Engineering, Volume 27, Issue 5 , 2014.
[21] Aiex, C., G. Campos, Petrobras, A. Deshpande, A. Chiney, S. Patil, K. Ravi, Halliburton, “An experimental study on effects of static CO2 on cement under high-pressure/high-temperature conditions,” OTC-25659-MS, 2015.
[22] Bonett, A., “ Getting to the root of gas migration,” Oilfield review, ISSN:0923-1730, Volume 8, Pages 36-44, 1996.
[23] Barlet, G., V. Rimmelé, G. Goffe, B. Porcherie, “Mitigation strategies for the risk of CO2 migration through wellbores, ” SPE 98924,2006.
[24] Barlet-Gouédard, V., G. Rimmelé , O. Porcherie, N. Quisel, J. Desroches, “ A solution against well cement degradation under CO2 geological storage environment, ” International Journal of Greenhouse Gas Control 3, Pages 206-216, 2009.
[25] Brandl, A., J. Cutler, A. Seholm, M. Sansil, G. Braun, “Cementing solutions for corrosive well environments,” Society of Petroleum Engineers, SPE-132228-PA, 2011.
[26] Carey, J. W., M. Wigand, S. J. Chipera, G. Wolde-Gabriel, R. Pawar, P.C. Lichtner, S. Wehner, M. Raines, G. D. Guthrie Jr., “Analysis and performance of oil well cement with 30 years of CO2 exposure from the SACROC Unit,” International Journal of Greenhouse Gas Control 1,75-85, 2007.
[27] Crow, W., J. W.Carey, S. Gasda, D. B Williams, “ Wellbore integrity analysis of a natural CO2 producer,” International Journal of Greenhouse Gas Control Volume 4, Issue 2, Pages 186-197, 2010.
[28] Duguid, A., M. Radonjic, G.W. Scherer, “Degradation of well cements exposed to carbonated Brine, ” Fourth Annual Conference on Carbon Capture and Sequestration Doe/Netl,2005.
[29] Duguid, A., “The effect of carbonic acid on well cements as identified through lab and field studies,” Society of Petroleum Engineers, SPE-119504-MS, 2008.
[30] Ershadi, V., T. Ebadi, A.R Rabani, L. Ershadi, H. Soltanian, “The effect of nanosilica on cement matrix permeability in oil well to decrease the pollution of receptive environment,” International Journal of Enviromental Science and Development, Vol. 2, No. 2, 2011.
[31] Fabienne, A., J. Corvisier, A. Schubnel, F. Brunet, B. Goffé, G. Rimmele, V. Barlet-Gouédard, “Effect of carbonation on the hydro-mechanical properties of Portland cements,” Cement and Concrete Research 39, Pages 1156-1163,2002.
[32] Garnier,A., J.B.Laudet, N. Neuyille, Y. Le Guen, “CO2-induced changes in oil well cements under downhole conditions: First experimental results 2010,” Society of Petroleum Engineers, SPE-134473-MS, 2010.
[33] Hossain, M. M., M. M. Amro, “Drilling and cmpletion callenges and remedies of CO2 injected wells with emphasis to mitigate well integrity issues,” SPE 133830, 2010.
[34] Hunter, K., J. Bielicki, “The production of water from saline aquifers through carbon dioxide capture and storage operations,” Engineering Conferences International ECI Digital Archives CO2 Summit II: Technologies and Opportunities 45, 2016.
[35] IPCC Carbon Dioxide Capture and and Storage Cambridge University Press, UK:IPCC, 2005.
[36] Kutchko, B. G., B. R. Strazisar, D. A. Dzombak, G. V. Lowry, N. Thaulow, “Degradation of well cement by CO2 under geologic sequestration conditions,” Environmental Science and Technology ,Volume 41 (13), Pages 4787-4792, 2007
[37] Kutchko, B. G., B. R. Strazisar, N. Huerta, G.V Lowry, D. A. Dzombak,N. Thaulow, “CO2 reaction with hydrated class H well cement under geologic sequestration conditions: effects of flyash admixtures,” Environmental Science and Technology, Volume 43 (10), Pages 3947–3952, 2009.
[38] Kutchko, B. G., B. R. Strazisar, S. B. Hawthorne, C. L. Lopano, D. J. Miller, J. A. Hakala, G. D. Guthrie,“H2S–CO2 reaction with hydrated Class H well cement: Acid-gas injection and CO2 Co-sequestration,” International Journal of Greenhouse Gas Control, Volume 5, Pages 880–888, 2011.
[39] Kim, J. J., M. K. Rahman, A. A. Al-Majed, M. M. Al-Zahrani, M. M. R. Taha, “Nanosilica effects on composition and silicate polymerization in hardened cement paste cured under high temperature and pressure,” Cement & Concrete Composites, Volume 43, Pages 78-85, 2013.
[40] Li, Q., Y. N. Wei, G. Liu, M. Jing, M. Zhang, W. Fei, X. Li, “ Feasibility of the combination of CO2 geological storage and saline water development in sedimentary basins of China,” Energy Procedia Volume 37, Pages 4511-4517, 2013.
[41] Lin, Y., D. Zhu, D. Zeng, Y. Yang, T. Shi, K. Deng, C. Ren, D. Zhang,F. Wang, “Experimental studies on corrosion of cement in CO2 injection wells under supercritical conditions,” Corrosion Science, Volume 74, Pages 13-21, 2013.
[42] Lesti, M., C. Tiemeyer, J .Plank, “CO2 stability of Portland cement based well cementing systems for use on carbon capture & storage (CCS) wells, ” Cement and Concrete Research,Volume 45, Pages 45-54, 2013.
[43] Li, Q., Y.N. Wei, G. Liu, H. Shi, “CO2-EWR: a cleaner solution for coal chemical industry in China,” Journal of Cleaner Production Volume 103, 15, Pages 330-337,2015.
[44] Li, X., Q. Li, B. Bai, N. Wei, W. Yuan, “ The geomechanics of Shenhua carbon dioxide capture and storage (CCS) demonstration project in Ordos Basin, China ,” Journal of Rock Mechanics and Geotechnical Engineering Volume 8, Issue 6, Pages 948-966, 2016.
[45] Metz, B., O. Davidson, H.D. Coninck, M. Loos, L. Meyer, “Carbon dioxide capture and storage,” Cambridge University Press, United Kingdom and New York, NY, USA, Page: 216,2005.
[46] Moroni, N., A. K. Santra, K. Ravi, W. J Hunter,“Holistic design of cement systems to survive CO2 environment,” SPE-124733-MS, 2009.
[47] Milestone, N.B., C.H. Bigley, H. Carl, T. Andrew, “ Effects of CO2 on geothermal cements,” GRC Transactions, Volume 36, 2012
[48] Nordbotten, J. M., M. A. Celia, S. Bachu, H. K. Dahle, “Semianlytical solution for CO2 leakage through an abandoned well,” Environmental Science and Technology , Volume 39, Page: 602-611, 2005.
[49] Neuville, N., G. Aouad, E. Lecolier, D. Damidot, “Innovative leaching tests of an oil well cement paste for CO2 storage: Effect of the pressure at 80°C,” Energy Procedia, 23, Pages 472-479, 2012.
[50] Onan, D. D., “Effects of supercritical carbon dioxide on well cements,” Society of Petroleum Engineers ,SPE-12593-MS, 1984.
[51] Rimmelé, G., V. Barlet-Gouedard, O. Porcherie, B. Goffe, F. Brunet, “Heterogeneous porosity distribution in Portland cement exposed to CO2-rich fluids, ” Cement and Concrete Research 38, Pages 1038-1048,2008
[52] Rong, Z. D., W. Sun, H. J. Xiao, W. Wang, “Effect of silica fume and fly ash on hydration and microstructure evolution of cement based composites at low water–binder ratios,” Construction and Building Materials, 51, Pages 446-450, 2014.
[53] Shen, J.C., D.S. Pye, “Effects of CO2 attack on cement in high-temperature applications”, Society of Petroleum Engineers, SPE-18618-MS, 1989.
[54] Santra, S., B. R. Reddy, L. Feng, F. Rocky, Halliburton, “Reaction of CO2 with portland cement at downhole conditions and the role of pozzolanic supplements,” Society of Petroleum Engineers, SPE-121103-MS, 2009.
[55] Venhuis, M. A., E. J. Reardon, “Carbonation of cementitious wasteforms under supercritical and high pressure subcritical conditions,” Environmental Technology 24(7), Pages 877-887, 2003.
[56] Zhang, J., Y. Wang., M. Xu, Q. Zhao, “Effect of carbon dioxide corrosion on compressive strength of oil-well cement,” Journal of the chinese ceramic society, Vol.37, No.4l, 2009.
[57] Zhang, M., S. Talman, “Experimental study of well cement carbonation under geological storage conditions,” Energy Procedia,
Volume 63, Pages 5813-5821, 2014.