| 研究生: |
陳勝傑 Chen, Sheng-chieh |
|---|---|
| 論文名稱: |
在非極化A面氮化鎵於R面藍寶石基板上的蕭特基二極體之光電特性研究 The Optoelectronic Characteristics of Schottky Barrier Diodes to Nonpolar A-plane GaN With R-plane Sapphire |
| 指導教授: |
賴韋志
Lai, Wei-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 蕭特基二極體 、A面氮化鎵 |
| 外文關鍵詞: | A-plane GaN, photodetector, Schottky contact |
| 相關次數: | 點閱:100 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主題是蕭特基接觸與在未摻雜A面氮化鎵上的光檢測器特性之研究,採用的試片為利用MOCVD在R面藍寶石(sapphire)基板上成長A面氮化鎵薄膜,藉由不同的金屬功函數如鉑、鎳、鉻、鈦,製作在未摻雜的氮化鎵上,形成蕭特基能障。於A面氮化鎵上由鉑、鎳、鉻、鈦所形成的蕭特基能障高度分別為0.88eV、0.81eV、0.69eV、0.68eV且得到半導體電子負性值:S為0.156。發現蕭特基接觸於A面氮化鎵和在C面氮化鎵上相比較有較大的費米釘札效應。當鉑、鎳、鉻和鈦四種不同金屬蒸鍍在A面未摻雜的氮化鎵,注入偏壓為-4V時,漏電流分別為 8.36x10-7A、1.71x10-6A、4.18x10-5A、7.171x10-5A.。漏電流會隨著偏壓大幅度的增加主要是由於高密度的缺陷造成例如: 缺陷和線差排會由A面氮化鎵成長在R面氮化鋁基板產生。高密度缺陷的存在同時也產生載子的漏電路徑和費米釘札效應。
為了有效降低漏電流,選擇在鎳和A面氮化鎵中間以低溫成長的氮化鎵或絕緣體(SiO2)當覆蓋層,以鎳-金為金屬薄膜於A面氮化鎵製作成蕭特基光檢測器。當注入偏壓為-4V時,若採用30nm低溫成長的氮化鎵為覆蓋層,漏電流將會減少到2.79x10-7A,但選擇10nm的絕緣體(SiO2)當覆蓋層時,漏電流會進一步減少到2.90x10-10A。以絕緣層(SiO2)為覆蓋層於A面氮化鎵上的蕭特基二極體在光響應鑑別度(355nm/400nm)上比用低溫成長的氮化鎵當覆蓋層部分遠大於一個數量級以上。實驗結果顯示,選擇在鎳和A面氮化鎵中間以SiO2當覆蓋層製成的金屬-絕緣-半導體(MIS)光檢測器能有效的抑制電流,以及提升光性和電性。
此外,由於A面氮化鎵受到非等向性的應力,造成不同方向的極化光會有吸收程上的不同。所以當改變整個元件的應力時,發現也會影響極化光吸收的靈敏度。
The study of the subject was characteristics of Schottky contact and Schottky photodetector of A-plane undoped GaN. We adopt the sample which was deposited A-plane GaN film on R-plane Al2O3 substrate. Different metal contacts including Pt, Cr, Ni and Ti were evaporated on undoped-GaN layer to serve as Schottky barrier. The Schottky barrier heights of the Pt, Cr, Ni, and Ti on undoped A-plane GaN were 0.88eV, 0.81eV, 0.69eV, and 0.68eV, respectively. And the S parameter of the A-plane GaN Schottky contact was 0.156. We found that the Schottky contact of A-plane GaN had a strong surface pining effect compared with Schottky contact of C-plane GaN. The leakage current at -4V of the Pt, Cr, Ni, and Ti on undoped A-plane GaN were 8.36x10-7A, 1.71x10-6A, 4.18x10-5A, and 7.171x10-5A, respectively. The significant leakage current might be from the high density defects such as pits, threading dislocations, of the A-plane GaN on R-plane Al2O3. The existence of the high density defects could cause the leakage path of the carriers and the Fermi-level pinning effect at the metal/semiconductor interface, revealing a weak dependence of Schottky barrier height.
In order to reduce the leakage current effectively for the application of the photodetectors, we selected the LT-GaN or SiO2 to serve as inserting layer in between Ni and A-plane GaN interface. The reverse leakage current at -4V of Au/Ni/A-plane GaN Schottky diode was reduced to 2.79x10-7A by introducing the 30nm-thick LT-GaN inserting layer and could be further suppressed to 2.90x10-10A by using the 10nm-thick SiO2 inserting layer. However, the rejection ratio (355nm/400nm) of the Au/Ni/SiO2/A-palne GaN Schottky photodiode is about one more order better than the Au/Ni/LT-GaN/A-plane GaN Schottky photodiode.The experimental results displayed the SiO2 inserting layer in between the Ni and A-plane GaN interface could effectively reduce the leakage current and elevate the optical property.
Because the A-plane GaN was suffered by anisotropic strain, it had the optical polarization anisotropy characteristics of light absorption. We find the modification of anisotropic strain can also effect the polarization sensitive.
第一章 參考文獻
[1] M. A. Khan, J. N. Kuznia, D. T. Olson, W. J. Schaff, J. W. Burm, and M. S. Shur, Appl. Phys. Lett. Vol.65, pp. 1121 (1994)
[2] F. Ren, C. R. Abernathy, J. M. Van Hove, P. P. Chow, R. Hickman, J.J. Klaasen, R. F. Kopf, H. Cho, K. B. Jung, J. R. La Roche, R. G.Wilson, J. Han, R. J. Shul, A. G. Baca, and S. J. Pearton, MRS Internet J. Nitride Semicond. Res. Vol. 3, 41 (1998)
[3] M. A. Khan, J. N. Kuznia, A. R. Bhattarai, and D. T. Oslon,Appl. Phys. Lett. Vol. 62, pp. 1786 (1993)
[4] G. S. Nakamura, Semicond. Sci. Technol. Vol. 14, pp. R27 (1999)
[5] M. A. Khan, J. N. Kuznia, D. T. Olson, M. Blasingame, and A. R. Bhattarai, Appl. Phys. Lett. Vol. 63, pp. 2455 (1993)
[6] W. A. Melton and J. I. Pankove: J. Cryst. Growth 178 (1997) 168.
[7] M. D. Craven, S. H. Lim, F. Wu, J. S. Speck and S. P. DenBaars: Appl. Phys. Lett. 81 (2002) 469.
[8] M. D. Craven, P. Waltereit, J. S. Speck and S. P. DenBaars: Appl. Phys. Lett. 84 (2004) 496.
[9] M. D. Craven, F. Wu, A. Chakraborty, B. Imer, U. K. Mishra, S. P. DenBaars and J. S. Speck: Appl. Phys. Lett. 84 (2004) 1281.
[10] E. Kuokstis, C. Q. Chen, M. E. Gaevski, W. H. Sun, J. W. Yang, G. Simin, M. Asif Khan, H. P. Maruska, D. W. Hill, M. C. Chou, J. J. Gallagher and B. Chai: Appl. Phys. Lett. 81 (2002) 4130.
[11] Y. J. Sun, O. Brandt, S. Cronenberg, S. Dhar, H. T. Grahn, K. H. Ploog, P. Waltereit and J. S. Speck: Phys. Rev. B 67 (2003) 041306.
[12] M. Asif Khan, J. N. Kuznia, D. T. Olson, J. M. Van hove, M. Blasingame, L. F. Reitz, “High-responsivity photoconductive ultraviolet sensors basedon insulating single-crystal GaN epilayers”, Appl. Phys. Lett. Vol. 60, pp.2917 (1992)
[13] E. Monroy, E. Muñoz, F. J. Sánchez, F. Calle, E. Calleja, B. Beaumout , P. Gibart, J. A. Muñoz, and F. Cussó, vol. 13, pp. 1042-1046, June 1998.
[14] G. Parish, S. Keller, P. Kozodoy, J. A. Ibbetson, H. Marchand, P. T. Fini,S. B. Fleischer, S. P. DenBaars, and U. K. Mishra, Appl. Phys. Lett., vol. 75, pp. 247-249,July 1999.
[15] E. Monroy, M. Hamilton, D. Walker, P. Kung, F. J. Sánchez, and M. Razeghi, Appl. Phys. Lett. vol. 74, pp. 1171-1173, Feb. 1999.
[16] A. Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, M. A. Khan, D.Kuksenkov, and H. Temkin, Appl. Phys. Lett., vol. 71, pp. 2334-2336, Oct. 1997.
[17] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, M. A. Khan, D. Kuksenkov, and H. Temkin, Appl. Phys. Lett., vol. 70, pp. 2277-2279, Apr. 1997.
[18] Z. C. Huang, J. C. Chen, and D. Wickenden, J. Cryst. Growth, vol. 170, pp. 362-362, Jan. 1997.
[19] C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J.K. Sheu, and J. F. Chen, IEEE Photon. Technol. Lett., vol. 13, pp. 848-850, Aug. 2001.
[20] D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F. J. Sanchez, J.Diaz, and M. Razeghi, Appl. Phys. Lett., vol. 74, pp. 762-764.
第二章 參考文獻
[1] Dieter K. Schroder , “Semiconductor material and device characterization” , A Wiley-Interscience Publication , chap. 3(1998).
[2] 施敏 ,“半導體元件物理與製作技術(二版)”, chap7.1 , (2002).
[3] D.A. Neamen ,“半導體物理及元件(三版)”, chap9.1 , (2003).
[4] S. M. Sze, “Semiconductor Devices Physics and Technology”, Ch.3.
[5] S. Noor Mohammad, Journal of Applied Physics 97, 063703 (2005).
[6] J. C. Campbell, AT&T Bell Lab. Technical Memorendum (unpublished).
[7] G. Dearnaley, J. H. Freeman, R. S. Nelson, Stephen, “Ion- Implantation ”,Ch. 5 Applications to semiconductors, p. 561.
[8] S. R. Forrest, M. DiDomenico, Jr., R. G. Smith, H. J. Stocker, Appl. Phys. Lett., Vol. 36, No. 7, 1 April, 1980, p.580.
[9] S. R. Forrest, R. F. Leheny, R. E. Nahory, M. A. Pollack, Appl. Phys. Lett., Vol. 37, No. 3, 1 August, 1981, p. 217.
[10] E. J. Miller, E. T. Yu, P. Waltereit, and J. S. Speck, Appl. Phys. Lett. 84,535 (2003).
[11] J. C. Carrano, T. Li, P.A. Grudowski, C. J. Eiting, R. D. Dupuis, and J.C. Campbell, J. Appl. Phys. 83, 6148 (1998).
[12] J. C. Carrano, T. Li, P.A. Grudowski, C. J. Eiting, R. D. Dupuis, and J.C. Campbell, Appl. Phys. Lett. 72 , 542 (1998).
[13] 光電半導體技術手冊,蘇炎坤、紀國鐘.
[14] John Bardeen, Phys. Rev. 71, 717 (1947).
[15] M. S. Tyagi, Introduction To Semiconductor Materials and Devices, (Wiley, New York, 1991).
[16] 表面科學 Vol. 21, No. 12, pp. 791―799, 2000.
[17] Semiconductor Physics & Devices, Chap. 9, Third Edition, Donald A. Neamen.
第四章 參考文獻
[1] M. L. Lee, J.K.sheu and S. W. Lin Appl. Phys. Lett. 81 (2002) 469.
[2] S. M. Sze. Physics of Semiconductor Device(Wiley, New )
[3] Yan-Kuin SU*,Yu-Zung CHIOU, Fuh-shyang JUANG ,Shoou-Jin CHANG and Jinn-Kung SHEU Jpn J. Appl. Phys. Vol.40(2001)
[4] N. F. Gardner, J. C. Kim, J. J. Wierer, Y. C. shen, and M. R. Krames, Appl. Phys. Lett. 86, 111101 (2005).
[5] R. Wirth, A.Moritz, C.Geng, F. Scholz, and A. Hangleiter, Appl. Phys. Lett. 69,2225(1996)
[6] H. Temkin, M. B. Panish, and R. A. Logan, Appl. Phys. Lett. 47, 978(1985)
[7] A. Shikanai, T. Azuhata, T. Sota, S. Chichibu, A. Kuramata, K. Horini, and S. Nakamura, J. Appl. Phys. 81 417(1997)
[8] A. J. Fischer, W. Shan, J. J. Song,Y. C. Chang, R. Horning, and B. Goldenberg, Appl. Phys. Lett. 71, 1981(1997)