簡易檢索 / 詳目顯示

研究生: 陳奎希
Chen, Kuei-Hsi
論文名稱: 以第一原理探討Na3V2(PO4)2F3為正極之鈉鋰離子混合電池穩定結構及電化學性質
An ab initio study on the structural and electrochemical properties of Na3V2(PO4)2F3 as cathode materials for hybrid-ion batteries
指導教授: 林士剛
Lin, Shih-kang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 160
中文關鍵詞: Na3V2(PO4)2F3正極材料混合離子電池結構優化第一原理計算
外文關鍵詞: Na3V2(PO4)2F3, high voltage cathode, sodium-ion batteries (NIBs), hybrid-ion batteries (HIBs), structure optimization, ab-initio study
相關次數: 點閱:67下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Na3V2(PO4)2F3是磷酸氟釩鈉家族的其中一種,因為相對高的平均工作電壓(約為3.9 V)和良好的循環穩定性近年來被認為是鈉離子電池和鈉鋰混合離子電池中有潛力的正極材料。鈉離子電池和鈉鋰混和離子電池這些後鋰離子電池以相對低成本的鈉基正極取代傳統鋰基正極,可以有效減少對鋰礦的依賴並解決鋰礦日益不足而導致成本飆漲的問題。在本研究中,首先我們基於過去臨場實驗文獻中所觀察到的相轉變現象,利用第一原理計算方式來了解過去文獻中眾說紛紜的充放電反應機制,以生成能的角度分析在平衡狀態下的穩定結構和非穩定結構。再來探討不同比例的鈉和鋰離子在Na3V2(PO4)2F3正極的情況,觀察正極中相對離子濃度對於電化學表現和結構的影響。我們以熱力學靜態計算的方式,研究實驗上不容易觀測到的平衡狀態下究竟為穩定單相或是可能的兩相共存,並且進一步預測在鈉鋰混合離子電池中的最佳可能反應路徑。本研究以了解複雜的離子傾向嵌入位置、結構轉變和電化學特性為目標。

    Na3V2(PO4)2F3, one type of sodium vanadium fluorophosphates, is considered as a promising cathode material for NIBs and Na/Li HIBs owing to their low cost, cycling stability, and high working potentials. In this work, the stoichiometric NaxV2(PO4)2F3 with various initial symmetry structures observed from the previous in-operando studies have been successfully modeled and optimized by means of first principles calculations. Similar study has not been carried out so far due to the complicated phase transformation during cycling, and there are many different opinions on the cycling mechanism of this cathode material no matter used in NIBs and HIBs. Furthermore, the optimistic models of Na3V2(PO4)2F3 are investigated with different ratios of Na and Li to observe whether the relative concentration in the host material would affect the electrochemical performance. This work is aimed to provide a better understanding of the stable phase in the equilibrium state under different state of charge (SoC) and electrochemical properties on the complex Na3V2(PO4)2F3 structure in both NIBs and HIBs.

    中文摘要 I Abstract II Acknowledgements III Table of Contents IV List of Tables VI List of Figures VII Chapter 1 Introduction 1 Chapter 2 Literature Review 4 2.1 From Li-ion batteries to Na-ion batteries 4 2.2 Hybrid Na/Li-ions batteries 8 2.3 Anode materials 11 2.4 Electrolytes 15 2.5 Cathode materials 16 2.5.1 Transition metal oxides 17 2.5.2 Transition metal fluoride 20 2.5.3 Polyanion Compounds 21 2.6 Na3V2(PO4)2F3 cathode materials 37 2.6.1 Crystal structures of Na3V2(PO4)2F3 and structural evolution 38 2.6.2 Cycling mechanism in sodium-ion and hybrid-ion batteries with Na3V2(PO4)2F3 cathode 45 2.6.3 Reaction mechanism in sodium-ion and hybrid-ion batteries with Na3V2(PO4)2F3 cathode during cycling 51 2.7 Motivations 54 Chapter 3 Calculation methods 56 3.1 Density functional theory 56 3.2 Hohenberg-Kohn theorem 58 3.3 Kohn-Sham theorem 59 3.4 Exchange correlation functional 61 3.5 LDA+U and GGA+U methods 63 3.6 Self-consistent field calculation method 64 3.7 VASP software calculation functions and parameter settings 66 Chapter 4 Results and Discussions 70 4.1 Atomic-level model building 73 4.1.1 Pristine Na3V2(PO4)2F3 structures 73 4.1.2 Bulk benchmark calculation 78 4.1.3 Discussion of ground state arrangement 86 4.1.4 From Na-based to hybrid cathode 96 4.2 Charge and discharge process simulation 97 4.2.1 Simulation of the first charge with sodium extraction 97 4.2.2 Simulation of the first discharge with hybrid ions insertion 115 Chapter 5 Conclusions 126 Reference 127 Appendix 137 Appendix A 137 Appendix B 147 Appendix C 153 Appendix D 155 Appendix E 159

    1. Palomares, V., P. Serras, I. Villaluenga, K.B. Hueso, J. Carretero-González, and T. Rojo, Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy & Environmental Science, 2012. 5(3).
    2. Barker, J., R.K.B. Gover, P. Burns, and A.J. Bryan, Hybrid-Ion. Electrochemical and Solid-State Letters, 2006. 9(4).
    3. Bianchini, M., P. Xiao, Y. Wang, and G. Ceder, Additional Sodium Insertion into Polyanionic Cathodes for Higher-Energy Na-Ion Batteries. Advanced Energy Materials, 2017. 7(18).
    4. Park, Y.U., D.H. Seo, H. Kim, J. Kim, S. Lee, B. Kim, and K. Kang, A Family of High‐Performance Cathode Materials for Na‐ion Batteries, Na3 (VO1− xPO4) 2 F1+ 2x (0≤ x≤ 1): Combined First‐Principles and Experimental Study. Advanced Functional Materials, 2014. 24(29): p. 4603-4614.
    5. Zhang, B., R. Dugas, G. Rousse, P. Rozier, A.M. Abakumov, and J.M. Tarascon, Insertion compounds and composites made by ball milling for advanced sodium-ion batteries. Nat Commun, 2016. 7: p. 10308.
    6. Guyomard, D. and J.M. Tarascon, Rocking‐chair or lithium‐ion rechargeable lithium batteries. Advanced Materials, 1994. 6(5): p. 408-412.
    7. Armand, M. and J.-M. Tarascon, Building better batteries. nature, 2008. 451(7179): p. 652-657.
    8. Thackeray, M.M., C. Wolverton, and E.D. Isaacs, Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy & Environmental Science, 2012. 5(7): p. 7854-7863.
    9. Osiak, M., H. Geaney, E. Armstrong, and C. O'Dwyer, Structuring materials for lithium-ion batteries: advancements in nanomaterial structure, composition, and defined assembly on cell performance. Journal of Materials Chemistry A, 2014. 2(25): p. 9433-9460.
    10. Gao, X.-P. and H.-X. Yang, Multi-electron reaction materials for high energy density batteries. Energy & Environmental Science, 2010. 3(2): p. 174-189.
    11. Abraham, K., Intercalation positive electrodes for rechargeable sodium cells. Solid State Ionics, 1982. 7(3): p. 199-212.
    12. Newman, G.H. and L.P. Klemann, Ambient Temperature Cycling of an Na‐TiS2 Cell. Journal of The Electrochemical Society, 1980. 127(10): p. 2097.
    13. Shacklette, L., T. Jow, and L. Townsend, Rechargeable electrodes from sodium cobalt bronzes. Journal of The Electrochemical Society, 1988. 135(11): p. 2669.
    14. Nayak, P.K., L. Yang, W. Brehm, and P. Adelhelm, From lithium‐ion to sodium‐ion batteries: advantages, challenges, and surprises. Angewandte Chemie International Edition, 2018. 57(1): p. 102-120.
    15. Yao, H.-R., Y. You, Y.-X. Yin, L.-J. Wan, and Y.-G. Guo, Rechargeable dual-metal-ion batteries for advanced energy storage. Physical Chemistry Chemical Physics, 2016. 18(14): p. 9326-9333.
    16. Cho, J.-H., M. Aykol, S. Kim, J.-H. Ha, C. Wolverton, K.Y. Chung, K.-B. Kim, and B.-W. Cho, Controlling the intercalation chemistry to design high-performance dual-salt hybrid rechargeable batteries. Journal of the American Chemical Society, 2014. 136(46): p. 16116-16119.
    17. Levi, E., G. Gershinsky, D. Aurbach, O. Isnard, and G. Ceder, New insight on the unusually high ionic mobility in chevrel phases. Chemistry of materials, 2009. 21(7): p. 1390-1399.
    18. Xiong, H., Y. Liu, H. Shao, and Y. Yang, Understanding the electrochemical mechanism of high sodium selective material Na3V2(PO4)2F3 in Li+/Na+ dual-ion batteries. Electrochimica Acta, 2018. 292: p. 234-246.
    19. Kosova, N.V. and A.A. Shindrov, Effect of Mixed Li/Na-ion Electrolyte on Electrochemical Performance of Na4Fe3 (PO4) 2P2O7 in Hybrid Batteries.
    20. Palomares, V., P. Serras, I. Villaluenga, K.B. Hueso, J. Carretero-González, and T. Rojo, Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy & Environmental Science, 2012. 5(3): p. 5884-5901.
    21. Chevrier, V. and G. Ceder, Challenges for Na-ion negative electrodes. Journal of The Electrochemical Society, 2011. 158(9): p. A1011-A1014.
    22. Hwang, J.Y., S.T. Myung, and Y.K. Sun, Sodium-ion batteries: present and future. Chem Soc Rev, 2017. 46(12): p. 3529-3614.
    23. Sangster, J., C-Na (carbon-sodium) system. Journal of Phase Equilibria and Diffusion, 2007. 28(6): p. 571-579.
    24. Doeff, M.M., Y. Ma, S.J. Visco, and L.C. De Jonghe, Electrochemical insertion of sodium into carbon. Journal of The Electrochemical Society, 1993. 140(12): p. L169-L170.
    25. Alcántara, R., P. Lavela, G.F. Ortiz, and J.L. Tirado, Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries. Electrochemical and Solid-State Letters, 2005. 8(4): p. A222-A225.
    26. Stevens, D. and J. Dahn, High capacity anode materials for rechargeable sodium‐ion batteries. Journal of The Electrochemical Society, 2000. 147(4): p. 1271.
    27. Senguttuvan, P., G. l. Rousse, V. Seznec, J.-M. Tarascon and MR Palacín. Chem. Mater, 2011. 23: p. 4109.
    28. 陳金銘, 葉., 廖世傑,. 高安全鋰電池電解液. 材料世界網 <https://www.materialsnet.com.tw/DocView.aspx?id=10006>. 2012.
    29. Aurbach, D., Y. Talyosef, B. Markovsky, E. Markevich, E. Zinigrad, L. Asraf, J.S. Gnanaraj, and H.-J. Kim, Design of electrolyte solutions for Li and Li-ion batteries: a review. Electrochimica Acta, 2004. 50(2-3): p. 247-254.
    30. 龔丹誠, 李. 鋰電池隔離膜發展趨勢與近況 <https://www.materialsnet.com.tw/DocView.aspx?id=21438>. 2015.
    31. Delmas, C., C. Fouassier, and P. Hagenmuller, Structural classification and properties of the layered oxides. Physica B+ c, 1980. 99(1-4): p. 81-85.
    32. Braconnier, J.-J., C. Delmas, C. Fouassier, and P. Hagenmuller, Comportement electrochimique des phases NaxCoO2. Materials Research Bulletin, 1980. 15(12): p. 1797-1804.
    33. Delmas, C., J.-J. Braconnier, C. Fouassier, and P. Hagenmuller, Electrochemical intercalation of sodium in NaxCoO2 bronzes. Solid State Ionics, 1981. 3: p. 165-169.
    34. Berthelot, R., D. Carlier, and C. Delmas, Electrochemical investigation of the P2–Na x CoO 2 phase diagram. Nature materials, 2011. 10(1): p. 74-80.
    35. Doeff, M.M., M.Y. Peng, Y. Ma, and L. De Jonghe, Orthorhombic Na x MnO2 as a Cathode Material for Secondary Sodium and Lithium Polymer Batteries. Journal of the Electrochemical Society, 1994. 141(11): p. L145-L147.
    36. Doeff, M.M., T.J. Richardson, and L. Kepley, Lithium Insertion Processes of Orthorhombic Na x MnO2‐Based Electrode Materials. Journal of The Electrochemical Society, 1996. 143(8): p. 2507-2516.
    37. Thackeray, M.M., Manganese oxides for lithium batteries. Progress in Solid State Chemistry, 1997. 25(1-2): p. 1-71.
    38. Sauvage, F., L. Laffont, J.-M. Tarascon, and E. Baudrin, Study of the insertion/deinsertion mechanism of sodium into Na0. 44MnO2. Inorganic chemistry, 2007. 46(8): p. 3289-3294.
    39. Gocheva, I.D., M. Nishijima, T. Doi, S. Okada, J.-i. Yamaki, and T. Nishida, Mechanochemical synthesis of NaMF3 (M= Fe, Mn, Ni) and their electrochemical properties as positive electrode materials for sodium batteries. Journal of Power Sources, 2009. 187(1): p. 247-252.
    40. Yamada, Y., T. Doi, I. Tanaka, S. Okada, and J.-i. Yamaki, Liquid-phase synthesis of highly dispersed NaFeF3 particles and their electrochemical properties for sodium-ion batteries. Journal of Power Sources, 2011. 196(10): p. 4837-4841.
    41. Okada, S., Y. Takahashi, T. Kiyabu, T. Doi, J.-I. Yamaki, and T. Nishida. Layered transition metal oxides as cathodes for sodium secondary battery. in Meeting Abstracts. 2006. The Electrochemical Society.
    42. Yabuuchi, N., M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi, R. Okuyama, R. Usui, Y. Yamada, and S. Komaba, P2-type Na x [Fe 1/2 Mn 1/2] O 2 made from earth-abundant elements for rechargeable Na batteries. Nature materials, 2012. 11(6): p. 512-517.
    43. Goodenough, J.B., H.-P. Hong, and J. Kafalas, Fast Na+-ion transport in skeleton structures. Materials Research Bulletin, 1976. 11(2): p. 203-220.
    44. Jian, Z., Y.S. Hu, X. Ji, and W. Chen, Nasicon‐structured materials for energy storage. Advanced Materials, 2017. 29(20): p. 1601925.
    45. Fang, Y., J. Zhang, L. Xiao, X. Ai, Y. Cao, and H. Yang, Phosphate framework electrode materials for sodium ion batteries. Advanced Science, 2017. 4(5): p. 1600392.
    46. Chen, S., C. Wu, L. Shen, C. Zhu, Y. Huang, K. Xi, J. Maier, and Y. Yu, Challenges and perspectives for nasicon‐type electrode materials for advanced sodium‐ion batteries. Advanced Materials, 2017. 29(48): p. 1700431.
    47. Barpanda, P., G. Oyama, S.-i. Nishimura, S.-C. Chung, and A. Yamada, A 3.8-V earth-abundant sodium battery electrode. Nature communications, 2014. 5(1): p. 1-8.
    48. Liu, X., L. Tang, Q. Xu, H. Liu, and Y. Wang, Ultrafast and ultrastable high voltage cathode of Na2+ 2xFe2-x (SO4) 3 microsphere scaffolded by graphene for sodium ion batteries. Electrochimica Acta, 2019. 296: p. 345-354.
    49. Meng, Y., T. Yu, S. Zhang, and C. Deng, Top-down synthesis of muscle-inspired alluaudite Na 2+ 2x Fe 2− x (SO 4) 3/SWNT spindle as a high-rate and high-potential cathode for sodium-ion batteries. Journal of Materials Chemistry A, 2016. 4(5): p. 1624-1631.
    50. Moreau, P., D. Guyomard, J. Gaubicher, and F. Boucher, Structure and stability of sodium intercalated phases in olivine FePO4. Chemistry of Materials, 2010. 22(14): p. 4126-4128.
    51. Kuwahara, A., S. Suzuki, and M. Miyayama, Hydrothermal synthesis of LiFePO 4 with small particle size and its electrochemical properties. Journal of electroceramics, 2010. 24(2): p. 69-75.
    52. Ali, G., J.-H. Lee, D. Susanto, S.-W. Choi, B.W. Cho, K.-W. Nam, and K.Y. Chung, Polythiophene-wrapped olivine NaFePO4 as a cathode for Na-ion batteries. ACS applied materials & interfaces, 2016. 8(24): p. 15422-15429.
    53. Heubner, C., S. Heiden, M. Schneider, and A. Michaelis, In-situ preparation and electrochemical characterization of submicron sized NaFePO4 cathode material for sodium-ion batteries. Electrochimica Acta, 2017. 233: p. 78-84.
    54. Kim, J., D.-H. Seo, H. Kim, I. Park, J.-K. Yoo, S.-K. Jung, Y.-U. Park, W.A. Goddard III, and K. Kang, Unexpected discovery of low-cost maricite NaFePO 4 as a high-performance electrode for Na-ion batteries. Energy & Environmental Science, 2015. 8(2): p. 540-545.
    55. Jian, Z., Y.S. Hu, X. Ji, and W. Chen, NASICON-Structured Materials for Energy Storage. Adv Mater, 2017. 29(20).
    56. Cretin, M. and P. Fabry, Comparative study of lithium ion conductors in the system Li1+ xAlxA2− xIV (PO4) 3 with AIV= Ti or Ge and 0≤ x≤ 0· 7 for use as Li+ sensitive membranes. Journal of the European Ceramic Society, 1999. 19(16): p. 2931-2940.
    57. Hong, H.-P., Crystal structures and crystal chemistry in the system Na1+ xZr2SixP3− xO12. Materials Research Bulletin, 1976. 11(2): p. 173-182.
    58. d'Yvoire, F., M. Pintard-Scrépel, E. Bretey, and M. De la Rochere, Phase transitions and ionic conduction in 3D skeleton phosphates A3M2 (PO4) 3: A= Li, Na, Ag, K; M= Cr, Fe. Solid State Ionics, 1983. 9: p. 851-857.
    59. Jian, Z., L. Zhao, H. Pan, Y.-S. Hu, H. Li, W. Chen, and L. Chen, Carbon coated Na3V2 (PO4) 3 as novel electrode material for sodium ion batteries. Electrochemistry Communications, 2012. 14(1): p. 86-89.
    60. Jian, Z., W. Han, X. Lu, H. Yang, Y.S. Hu, J. Zhou, Z. Zhou, J. Li, W. Chen, and D. Chen, Superior electrochemical performance and storage mechanism of Na3V2 (PO4) 3 cathode for room‐temperature sodium‐ion batteries. Advanced Energy Materials, 2013. 3(2): p. 156-160.
    61. Jian, Z., C. Yuan, W. Han, X. Lu, L. Gu, X. Xi, Y.S. Hu, H. Li, W. Chen, and D. Chen, Atomic Structure and Kinetics of NASICON NaxV2 (PO4) 3 Cathode for Sodium‐Ion Batteries. Advanced Functional Materials, 2014. 24(27): p. 4265-4272.
    62. Song, W., X. Ji, Z. Wu, Y. Zhu, Y. Yang, J. Chen, M. Jing, F. Li, and C.E. Banks, First exploration of Na-ion migration pathways in the NASICON structure Na 3 V 2 (PO 4) 3. Journal of Materials Chemistry A, 2014. 2(15): p. 5358-5362.
    63. Lee, J., A. Urban, X. Li, D. Su, G. Hautier, and G. Ceder, Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. science, 2014. 343(6170): p. 519-522.
    64. Shiratsuchi, T., S. Okada, J. Yamaki, and T. Nishida, FePO4 cathode properties for Li and Na secondary cells. Journal of power sources, 2006. 159(1): p. 268-271.
    65. Mathew, V., S. Kim, J. Kang, J. Gim, J. Song, J.P. Baboo, W. Park, D. Ahn, J. Han, and L. Gu, Amorphous iron phosphate: potential host for various charge carrier ions. NPG Asia Materials, 2014. 6(10): p. e138-e138.
    66. Barpanda, P., T. Ye, S.-i. Nishimura, S.-C. Chung, Y. Yamada, M. Okubo, H. Zhou, and A. Yamada, Sodium iron pyrophosphate: A novel 3.0 V iron-based cathode for sodium-ion batteries. Electrochemistry communications, 2012. 24: p. 116-119.
    67. Honma, T., T. Togashi, N. Ito, and T. Komatsu, Fabrication of Na2FeP2O7 glass-ceramics for sodium ion battery. Journal of the Ceramic Society of Japan, 2012. 120(1404): p. 344-346.
    68. Barpanda, P., G. Liu, C.D. Ling, M. Tamaru, M. Avdeev, S.-C. Chung, Y. Yamada, and A. Yamada, Na2FeP2O7: a safe cathode for rechargeable sodium-ion batteries. Chemistry of Materials, 2013. 25(17): p. 3480-3487.
    69. Kim, H., R. Shakoor, C. Park, S.Y. Lim, J.S. Kim, Y.N. Jo, W. Cho, K. Miyasaka, R. Kahraman, and Y. Jung, Na2FeP2O7 as a promising iron‐based pyrophosphate cathode for sodium rechargeable batteries: a combined experimental and theoretical study. Advanced Functional Materials, 2013. 23(9): p. 1147-1155.
    70. Niu, Y., M. Xu, S.-J. Bao, and C.M. Li, Porous graphene to encapsulate Na 6.24 Fe 4.88 (P 2 O 7) 4 as composite cathode materials for Na-ion batteries. Chemical Communications, 2015. 51(66): p. 13120-13122.
    71. Niu, Y., M. Xu, C. Cheng, S. Bao, J. Hou, S. Liu, F. Yi, H. He, and C.M. Li, Na 3.12 Fe 2.44 (P 2 O 7) 2/multi-walled carbon nanotube composite as a cathode material for sodium-ion batteries. Journal of Materials Chemistry A, 2015. 3(33): p. 17224-17229.
    72. Shakoor, R.A., C.S. Park, A.A. Raja, J. Shin, and R. Kahraman, A mixed iron–manganese based pyrophosphate cathode, Na 2 Fe 0.5 Mn 0.5 P 2 O 7, for rechargeable sodium ion batteries. Physical Chemistry Chemical Physics, 2016. 18(5): p. 3929-3935.
    73. Park, C.S., H. Kim, R.A. Shakoor, E. Yang, S.Y. Lim, R. Kahraman, Y. Jung, and J.W. Choi, Anomalous manganese activation of a pyrophosphate cathode in sodium ion batteries: A combined experimental and theoretical study. Journal of the American Chemical Society, 2013. 135(7): p. 2787-2792.
    74. Barpanda, P., T. Ye, M. Avdeev, S.-C. Chung, and A. Yamada, A new polymorph of Na 2 MnP 2 O 7 as a 3.6 V cathode material for sodium-ion batteries. Journal of Materials Chemistry A, 2013. 1(13): p. 4194-4197.
    75. Recham, N., J.-N. Chotard, L. Dupont, K. Djellab, M. Armand, and J.-M. Tarascon, Ionothermal synthesis of sodium-based fluorophosphate cathode materials. Journal of the Electrochemical Society, 2009. 156(12): p. A993-A999.
    76. Ellis, B., W. Makahnouk, Y. Makimura, K. Toghill, and L. Nazar, A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nature materials, 2007. 6(10): p. 749-753.
    77. Deng, X., W. Shi, J. Sunarso, M. Liu, and Z. Shao, A green route to a Na2FePO4F-based cathode for sodium ion batteries of high rate and long cycling life. ACS applied materials & interfaces, 2017. 9(19): p. 16280-16287.
    78. Li, Q., Z. Liu, F. Zheng, R. Liu, J. Lee, G.L. Xu, G. Zhong, X. Hou, R. Fu, and Z. Chen, Identifying the structural evolution of the sodium ion battery Na2FePO4F cathode. Angewandte Chemie, 2018. 130(37): p. 12094-12099.
    79. Sauvage, F., E. Quarez, J.-M. Tarascon, and E. Baudrin, Crystal structure and electrochemical properties vs. Na+ of the sodium fluorophosphate Na1. 5VOPO4F0. 5. Solid state sciences, 2006. 8(10): p. 1215-1221.
    80. Massa, W., O.V. Yakubovich, and O.V. Dimitrova, Crystal structure of a new sodium vanadyl (IV) fluoride phosphate Na3 {V2O2F [PO4] 2}. Solid state sciences, 2002. 4(4): p. 495-501.
    81. Sharma, N., P. Serras, V. Palomares, H.E. Brand, J. Alonso, P. Kubiak, M.L. Fdez-Gubieda, and T.f. Rojo, Sodium distribution and reaction mechanisms of a Na3V2O2 (PO4) 2F electrode during use in a sodium-ion battery. Chemistry of Materials, 2014. 26(11): p. 3391-3402.
    82. Park, Y.-U., D.-H. Seo, H. Kim, J. Kim, S. Lee, B. Kim, and K. Kang, A Family of High-Performance Cathode Materials for Na-ion Batteries, Na3(VO1−xPO4)2F1+2x(0 ≤x≤ 1): Combined First-Principles and Experimental Study. Advanced Functional Materials, 2014. 24(29): p. 4603-4614.
    83. Sanz, F., C. Parada, J. Rojo, and C. Ruiz-Valero, Synthesis, structural characterization, magnetic properties, and ionic conductivity of Na4MII3 (PO4) 2 (P2O7)(MII= Mn, Co, Ni). Chemistry of materials, 2001. 13(4): p. 1334-1340.
    84. Kim, H., I. Park, D.-H. Seo, S. Lee, S.-W. Kim, W.J. Kwon, Y.-U. Park, C.S. Kim, S. Jeon, and K. Kang, New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study. Journal of the American Chemical Society, 2012. 134(25): p. 10369-10372.
    85. Kim, H., I. Park, S. Lee, H. Kim, K.-Y. Park, Y.-U. Park, H. Kim, J. Kim, H.-D. Lim, and W.-S. Yoon, Understanding the electrochemical mechanism of the new iron-based mixed-phosphate Na4Fe3 (PO4) 2 (P2O7) in a Na rechargeable battery. Chemistry of Materials, 2013. 25(18): p. 3614-3622.
    86. Kim, H., G. Yoon, I. Park, K.-Y. Park, B. Lee, J. Kim, Y.-U. Park, S.-K. Jung, H.-D. Lim, and D. Ahn, Anomalous Jahn–Teller behavior in a manganese-based mixed-phosphate cathode for sodium ion batteries. Energy & Environmental Science, 2015. 8(11): p. 3325-3335.
    87. Song, W., X. Cao, Z. Wu, J. Chen, Y. Zhu, H. Hou, Q. Lan, and X. Ji, Investigation of the sodium ion pathway and cathode behavior in Na(3)V(2)(PO(4))(2)F(3) combined via a first principles calculation. Langmuir, 2014. 30(41): p. 12438-46.
    88. Le Meins, J.-M., M.-P. Crosnier-Lopez, A. Hemon-Ribaud, and G. Courbion, Phase transitions in the Na3M2 (PO4) 2F3 family (M= Al3+, V3+, Cr3+, Fe3+, Ga3+): synthesis, thermal, structural, and magnetic studies. Journal of solid state chemistry, 1999. 148(2): p. 260-277.
    89. Kosova, N.V., D.O. Rezepova, S.A. Petrov, and A.B. Slobodyuk, Electrochemical and Chemical Na+/Li+Ion Exchange in Na-Based Cathode Materials: Na1.56Fe1.22P2O7and Na3V2(PO4)2F3. Journal of The Electrochemical Society, 2016. 164(1): p. A6192-A6200.
    90. HAO, X., Z. LIU, Z. GONG, W. WEN, S. TAN, and Y. YANG, In situ XRD and solid state NMR characterization of Na 3 V 2 (PO 4) 2 F 3 as cathode material for lithium-ion batteries. SCIENTIA SINICA Chimica, 2012. 42(1): p. 38-46.
    91. Bianchini, M., N. Brisset, F. Fauth, F. Weill, E. Elkaim, E. Suard, C. Masquelier, and L. Croguennec, Na3V2(PO4)2F3 Revisited: A High-Resolution Diffraction Study. Chemistry of Materials, 2014. 26(14): p. 4238-4247.
    92. Dacek, S.T., W.D. Richards, D.A. Kitchaev, and G. Ceder, Structure and Dynamics of Fluorophosphate Na-Ion Battery Cathodes. Chemistry of Materials, 2016. 28(15): p. 5450-5460.
    93. Bianchini, M., F. Fauth, N. Brisset, F. Weill, E. Suard, C. Masquelier, and L. Croguennec, Comprehensive Investigation of the Na3V2(PO4)2F3–NaV2(PO4)2F3 System by Operando High Resolution Synchrotron X-ray Diffraction. Chemistry of Materials, 2015. 27(8): p. 3009-3020.
    94. Broux, T., B. Fleutot, R.n. David, A. Brüll, P. Veber, F.o. Fauth, M. Courty, L. Croguennec, and C. Masquelier, Temperature dependence of structural and transport properties for Na3V2 (PO4) 2F3 and Na3V2 (PO4) 2F2. 5O0. 5. Chemistry of Materials, 2018. 30(2): p. 358-365.
    95. Song, W., X. Ji, Z. Wu, Y. Zhu, F. Li, Y. Yao, and C.E. Banks, Multifunctional dual Na3V2(PO4)2F3cathode for both lithium-ion and sodium-ion batteries. RSC Adv., 2014. 4(22): p. 11375-11383.
    96. Song, W., X. Ji, J. Chen, Z. Wu, Y. Zhu, K. Ye, H. Hou, M. Jing, and C.E. Banks, Mechanistic investigation of ion migration in Na3V2(PO4)2F3 hybrid-ion batteries. Phys Chem Chem Phys, 2015. 17(1): p. 159-65.
    97. Jiang, T., G. Chen, A. Li, C. Wang, and Y. Wei, Sol–gel preparation and electrochemical properties of Na3V2 (PO4) 2F3/C composite cathode material for lithium ion batteries. Journal of alloys and compounds, 2009. 478(1-2): p. 604-607.
    98. Liu, Z.G., Y.Y. Hu, M.T. Dunstan, H. Huo, X.G. Hao, H. Zou, G.M. Zhong, Y. Yang, and C.P. Grey, Local Structure and Dynamics in the Na Ion Battery Positive Electrode Material Na3V2(PO4)(2)F-3. Chemistry of Materials, 2014. 26(8): p. 2513-2521.
    99. Shakoor, R.A., D.-H. Seo, H. Kim, Y.-U. Park, J. Kim, S.-W. Kim, H. Gwon, S. Lee, and K. Kang, A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries. Journal of Materials Chemistry, 2012. 22(38).
    100. Sholl, D. and J.A. Steckel, Density functional theory: a practical introduction. 2011: John Wiley & Sons.
    101. Kresse, G. and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational materials science, 1996. 6(1): p. 15-50.
    102. Kresse, G. and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical review B, 1996. 54(16): p. 11169.
    103. Momma, K. and F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of applied crystallography, 2011. 44(6): p. 1272-1276.
    104. Blöchl, P.E., Projector augmented-wave method. Physical review B, 1994. 50(24): p. 17953.
    105. Perdew, J., K. Burke, and M. Ernzerhof, Perdew, burke, and ernzerhof reply. Physical Review Letters, 1998. 80(4): p. 891.
    106. Schrödinger, E., An undulatory theory of the mechanics of atoms and molecules. Physical review, 1926. 28(6): p. 1049.
    107. Kragh, H., Quantum generations: A history of physics in the twentieth century. 2002: Princeton University Press.
    108. Perdew, J.P. and W. Yue, Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Physical review B, 1986. 33(12): p. 8800.
    109. Fuchs, M., Exchange-correlation energy: From LDA to GGA and beyond. Faradayweg.
    110. Zhou, F., M. Cococcioni, C.A. Marianetti, D. Morgan, and G. Ceder, First-principles prediction of redox potentials in transition-metal compounds with LDA+ U. Physical Review B, 2004. 70(23): p. 235121.
    111. Wang, L., T. Maxisch, and G. Ceder, Oxidation energies of transition metal oxides within the GGA+ U framework. Physical Review B, 2006. 73(19): p. 195107.
    112. Jain, A., G. Hautier, S.P. Ong, C.J. Moore, C.C. Fischer, K.A. Persson, and G. Ceder, Formation enthalpies by mixing GGA and GGA+ U calculations. Physical Review B, 2011. 84(4): p. 045115.
    113. Schwarz, K., Computation of material properties at the atomic scale. Selected Topics in Application of Quantum Mechanics; Pahlavani, MR, Ed.; InTech: Rijeka, Croatia, 2015: p. 275-310.
    114. Schwarz, K., Computation of materials properties at the atomic scale. Selected Topics in Application of Quantum Mechanics, 2015: p. 275.
    115. Schwerdtfeger, P., The pseudopotential approximation in electronic structure theory. ChemPhysChem, 2011. 12(17): p. 3143-3155.
    116. Kresse, G. and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Physical review b, 1999. 59(3): p. 1758.
    117. Types of spin ordering in perovskite oxides <http://folk.uio.no/ravi/activity/ordering/spinfig.html>.
    118. VASPwiki <https://www.vasp.at/wiki/index.php/MAGMOM>.
    119. Yan, G., S. Mariyappan, G. Rousse, Q. Jacquet, M. Deschamps, R. David, B. Mirvaux, J.W. Freeland, and J.M. Tarascon, Higher energy and safer sodium ion batteries via an electrochemically made disordered Na3V2(PO4)2F3 material. Nat Commun, 2019. 10(1): p. 585.
    120. Perdew, J.P., K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Physical review letters, 1996. 77(18): p. 3865.
    121. VASPwiki <https://www.vasp.at/wiki/index.php/ISIF>.
    122. Van de Walle, C.G. and J. Neugebauer, First-principles calculations for defects and impurities: Applications to III-nitrides. Journal of applied physics, 2004. 95(8): p. 3851-3879.
    123. Jain, A., S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, and G. Ceder, Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. Apl Materials, 2013. 1(1): p. 011002.
    124. Ong, S.P., W.D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V.L. Chevrier, K.A. Persson, and G. Ceder, Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis. Computational Materials Science, 2013. 68: p. 314-319.
    125. Matts, I.L., S. Dacek, T.K. Pietrzak, R. Malik, and G. Ceder, Explaining Performance-Limiting Mechanisms in Fluorophosphate Na-Ion Battery Cathodes through Inactive Transition-Metal Mixing and First-Principles Mobility Calculations. Chemistry of Materials, 2015. 27(17): p. 6008-6015.
    126. Van der Ven, A., M.K. Aydinol, and G. Ceder, First‐Principles Evidence for Stage Ordering in Li x CoO2. Journal of The Electrochemical Society, 1998. 145(6): p. 2149.

    下載圖示 校內:2023-07-30公開
    校外:2023-07-30公開
    QR CODE