| 研究生: |
張峻維 Chang, Chun-Wei |
|---|---|
| 論文名稱: |
雙核、三核及六核銅-鑭系混金屬錯合物之單分子磁鐵合成、結構及磁性研究 Syntheses, structures, and magnetic properties of series of dinuclear, trinuclear, and hexanuclear heterometallic copper(II)-lanthanide complexes |
| 指導教授: |
蔡惠蓮
Tsai, Hui-Lien |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 258 |
| 中文關鍵詞: | 銅–鑭系混金屬 、單分子磁鐵 、β-雙酮配位基 、1,3,5-三酮配位基 |
| 外文關鍵詞: | CuII–LnIII complex, single molecule magnets, β-diketone, 1,3,5-triketone |
| 相關次數: | 點閱:51 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文分三個部分,第一部分,以自製的多牙配位基L1,與氯化銅、硝酸鑭系反應,合成一系列 [CuII2LnIII(L1)2(Cl)3(DMF)2(μ3-OH)(NO3)] (Ln = Gd (1), Tb (2), Dy (3), Y (4))。以單晶X光繞射確定結構,由多牙配位基L1、μ3-OH、μ2-Cl橋接形成近似等腰三角形的結構。直流磁化率(direct current susceptibility, DC)測量,4·Y MT 值隨著溫度下降而下降,因金屬離子YШ為逆磁性,此現象歸因於CuП金屬離子間的反鐵磁交互作用力。1·Gd MT 值為先下降再上升,推論金屬間存在鐵磁交互作用力,利用哈密頓算符 (Hamiltonian Ĥ) 擬合 1·Gd MT 值得到交互作用力gCu = 2.017、 JCu1Gd = 2.775 cm-1、 JCu2Gd = 2.775 cm-1和 JCu1Cu2 = -13.211 cm-1。綜合分析兩錯合物的結果,金屬自旋處於一個spin frustration的狀態。交流磁化率(alternating current susceptibility, AC)的量測,2·Tb和3·Dy在零磁場下皆有磁緩現象。在1000 Oe 外加磁場下,2·Tb異向能為Ueff = 19.53 K;3·Dy異向能為Ueff = 19.90 K。
第二部分,以自製的triketone配位基L2,與過氯酸銅、醋酸鑭系反應,合成一系列 [CuII3LnIII3(L2)3(ClO4)2(OAC)5(OH)2(H2O)] (Ln = Tb(5), Dy(6), Er(7), Y(8)) 。以單晶X光繞射確定結構。化合物為六核金屬錯化物,三核銅金屬與三核鑭系金屬組成兩個同心的三角形結構。銅離子為外三角形且有較長的距離。直流磁化率量測,5·Tb–8·Y MT 值皆隨溫度下降而下降,為反鐵磁交互作用力。交流磁化率的量測,觀察到5·Tb和6·Dy有磁緩現象,因顯著的量子穿隧效應(QTM)影響,在低溫為拖尾的訊號,在 3000 Oe外加磁場下,得到5·Tb的異向能為 Ueff = 43.02 K;6·Dy為 Ueff = 65.77 K。
第三部分,以自製的配位基L3與過氯酸銅、氯化鑭系反應,得到一系列 [CuIIDyIII(L3)2Cl(H2O)4]Cl2 (Ln = Gd(9), Tb(10), Dy(11), Er(12),Y(13))。以單晶X光繞射確定結構,鑭系金屬配位環境除L3橋接外,皆為中性水分子配位。交流磁化率的量測,10·Tb和11·Dy有磁緩現象。10·Tb在1000 Oe外加磁場下,抑制大部分QTM,得到異向能為Ueff = 17.51 K。11·Dy在零磁場下,為拖尾的訊號。在1000 Oe加磁場下,有效地增加訊號,得到異向能為Ueff = 417.80 K。相較於沒有乙基的類似物,11·Dy在配位基上多了立體障礙,可使軸向性晶場修飾更偏向180˚,有更好的磁性表現。
The work contains three parts. In first part, the ligand L1 was prepared. Copper-lanthanide triangular trinuclear complex [CuII2LnIII(L1)2(Cl)3(DMF)2(μ3-OH)(NO3)]·solvent (Ln = Gd (1), Tb (2), Dy (3), Y (4)) has been synthesized by constituting multidentate ligand, copper(II) salt, and lanthanide(III) salt. The metal centers are bridged by β-diketone ligands, μ3-hydroxide, and μ2-chloride, resulting a [CuПLnШ(μ3-OH)(μ2-Cl)] core as well as almost isosceles triangle geometry of three nuclear. Direct current (DC) magnetic susceptibility measurements reveal the presence of intramolecular anti-ferromagnetic interaction between two Cu(II) center in 4·Y. In 1·Gd, ferro/anti-ferromagnetic interaction simultaneously behave leading to the existence of spin frustration. Alternating current (AC) magnetic susceptibility measurements point out that slow relaxations of the magnetization exhibit in 2·Tb and 3·Dy with and without field. Ueff = 19.53 K and τ0=8.36× 〖10〗^(-9) for 2·Tb; Ueff = 19.90 K and τ0 = 1.05 ×〖10〗^(-7) for 3·Dy are obtained by analyzing AC magnetic susceptibility result.
In second part, the ligand L2 was prepared. CuП3DyШ3 hexanuclear complexes [CuII3LnIII3(L2)3(ClO4)3(OAC)4(OH)2(H2O)]·solvent(Ln = Tb(5), Dy(6), Er(7), Y(8)) has been synthesized by constituting multidentate ligand, copper(II) salt, and lanthanide(III) salt. The structures data were determined by X-ray crystallography and expose that three Cu(II) and three Ln(III) ions construct in two concentric triangle. In DC measurement, χMT values decrease as temperatures decrease, and this result may cause by anti-ferromagnetic interaction and/or depopulation of spin-orbit coupled mJ states. In AC measurement, slow relaxations of the magnetization are observed in 5·Tb and 6·Dy. For 5·Tb, Ueff = 43.02 K and τ0=1.54× 〖10〗^(-12); for 6·Dy, Ueff = 65.77 K and τ0=4.06× 〖10〗^(-13) with applied field.
In third part, The ligand L3 was prepared. Copper-lanthanide dinuclear complexes [CuIIDyIII(L3)2Cl(H2O)4]Cl2·solvent (Ln = Gd(9), Tb(10), Dy(11), Er(12),Y(13)) were synthesized by multidentate ligand, copper salt, and lanthanide(III) salt. Structural studies demonstrate that the LnШ centers coordinated with only ligands and neutral aqua groups. AC data indicate complexes 10·Tb and 11·Dy exhibiting slow relaxations of the magnetization. Under 1000 Oe applied field, 10·Tb shows maximum peaks as function of temperature and successfully suppress QTM. For 11·Dy, out-of-phase signal (χM″) were enhanced with external 1000 Oe field leading to Ueff = 417.80 K and τ0=2.40× 〖10〗^(-12). To compare with analogue which have exactly same structure yet without ethyl group, 11·Dy performed large energy barrier and more axial crystal field.
Reference
1 Sessoli, R., Gatteschi, D., Caneschi, A. & Novak, M. A. Magnetic bistability in a metal-ion cluster. Nature 365, 141, doi:10.1038/365141a0 (1993).
2 Aromi, G., Aguila, D., Gamez, P., Luis, F. & Roubeau, O. Design of magnetic coordination complexes for quantum computing. Chemical Society reviews 41, 537-546, doi:10.1039/c1cs15115k (2012).
3 Layfield, R. A. Organometallic Single-Molecule Magnets. Organometallics 33, 1084-1099, doi:10.1021/om401107f (2014).
4 Sessoli, R. et al. High-spin molecules: [Mn12O12(O2CR)16(H2O)4]. Journal of the American Chemical Society 115, 1804-1816, doi:10.1021/ja00058a027 (1993).
5 Wernsdorfer, W. & Sessoli, R. Quantum Phase Interference and Parity Effects in Magnetic Molecular Clusters. Science 284, 133-135, doi:10.1126/science.284.5411.133 (1999).
6 Habib, F. & Murugesu, M. Lessons learned from dinuclear lanthanide nano-magnets. Chemical Society reviews 42, 3278-3288, doi:10.1039/c2cs35361j (2013).
7 Zhang, P., Guo, Y.-N. & Tang, J. Recent advances in dysprosium-based single molecule magnets: Structural overview and synthetic strategies. Coord. Chem. Rev. 257, 1728-1763, doi:10.1016/j.ccr.2013.01.012 (2013).
8 Rinehart, J. D. & Long, J. R. Exploiting single-ion anisotropy in the design of f-element single-molecule magnets. Chemical Science 2, 2078, doi:10.1039/c1sc00513h (2011).
9 Guo, F. S. et al. A Dysprosium Metallocene Single-Molecule Magnet Functioning at the Axial Limit. Angew Chem Int Ed Engl 56, 11445-11449, doi:10.1002/anie.201705426 (2017).
10 Liu, K., Shi, W. & Cheng, P. Toward heterometallic single-molecule magnets: Synthetic strategy, structures and properties of 3d–4f discrete complexes. Coord. Chem. Rev. 289-290, 74-122, doi:10.1016/j.ccr.2014.10.004 (2015).
11 Osa, S. et al. A Tetranuclear 3d−4f Single Molecule Magnet: [CuIILTbIII(hfac)2]2. Journal of the American Chemical Society 126, 420-421, doi:10.1021/ja037365e (2004).
12 Zhang, P., Zhang, L., Lin, S. Y. & Tang, J. Tetranuclear [MDy]2 compounds and their dinuclear [MDy] (M = Zn/Cu) building units: their assembly, structures, and magnetic properties. Inorg Chem 52, 6595-6602, doi:10.1021/ic400620j (2013).
13 Aronica, C. et al. A nonanuclear dysprosium(III)-copper(II) complex exhibiting single-molecule magnet behavior with very slow zero-field relaxation. Angew Chem Int Ed Engl 45, 4659-4662, doi:10.1002/anie.200600513 (2006).
14 Mahapatra, P. et al. Structural variations in (CuL)2Ln complexes of a series of lanthanide ions with a salen-type unsymmetrical Schiff base(H2L): Dy and Tb derivatives as potential single-molecule magnets. Dalton Trans 46, 12095-12105, doi:10.1039/c7dt02061a (2017).
15 Costes, J. P., Shova, S. & Wernsdorfer, W. Tetranuclear [Cu-Ln]2 single molecule magnets: synthesis, structural and magnetic studies. Dalton transactions, 1843-1849, doi:10.1039/b716098d (2008).
16 Costes, J.-P. et al. Di- or Trinuclear 3d-4f Schiff Base Complexes: The Role of Anions. Eur. J. Inorg. Chem. 2008, 5235-5244, doi:10.1002/ejic.200800750 (2008).
17 Elmali, A. & Elerman, Y. Magnetic properties and structure of a CuIIDyIII heterodinuclear Schiff base complex. J. Mol. Struct. 737, 29-33, doi:10.1016/j.molstruc.2004.10.007 (2005).
18 Gao, H. L. et al. A Dy4 single-molecule magnet and its Gd(iii), Tb(iii), Ho(iii), and Er(iii) analogues encapsulated by an 8-hydroxyquinoline Schiff base derivative and beta-diketonate coligand. Dalton transactions 46, 4669-4677, doi:10.1039/c7dt00118e (2017).
19 Huang, X. C., Zhao, X. H., Shao, D. & Wang, X. Y. Syntheses, structures, and magnetic properties of a family of end-on azido-bridged CuII-LnIII complexes. Dalton transactions 46, 7232-7241, doi:10.1039/c7dt01167a (2017).
20 Jiang, L. et al. Compartmental ligand approach for constructing 3d–4f heterometallic [CuII5LnIII2] clusters: synthesis and magnetostructural properties. CrystEngComm 19, 1816-1830, doi:10.1039/c6ce02519f (2017).
21 Kachi-Terajima, C. et al. Ferromagnetic Exchange Coupling in a Family of MnIII Salen-Type Schiff-Base Out-of-Plane Dimers. J. Phys. Chem. C 121, 12454-12468, doi:10.1021/acs.jpcc.7b03336 (2017).
22 Kuzmina, N. P., Malkerova, I. P., Alikhanyan, A. S. & Gleizes, A. N. The use of 3d-metal complexes as ligands to prepare volatile 4f–3d heterobimetallic complexes. J. Alloys Compd. 374, 315-319, doi:10.1016/j.jallcom.2003.11.098 (2004).
23 Sun, H. et al. Syntheses, structures, and magnetic properties of a cubane-like {Co4O4} cluster and a dinuclear CuII compound constructed from a tridentate Schiff base ligand. Polyhedron 125, 135-140, doi:10.1016/j.poly.2016.10.025 (2017).
24 Bi, Y. et al. Capping ligand perturbed slow magnetic relaxation in dysprosium single-ion magnets. Chemistry 17, 12476-12481, doi:10.1002/chem.201101838 (2011).
25 Cen, P. P. et al. Electrostatic Potential Determined Magnetic Dynamics Observed in Two Mononuclear beta-Diketone Dysprosium(III) Single-Molecule Magnets. Inorganic chemistry 56, 3644-3656, doi:10.1021/acs.inorgchem.7b00057 (2017).
26 Chen, G. J., Zhou, Y., Jin, G. X. & Dong, Y. B. [Dy(acac)(3)(dppn)].C(2)H(5)OH: construction of a single-ion magnet based on the square-antiprism dysprosium(III) ion. Dalton transactions 43, 16659-16665, doi:10.1039/c4dt01956c (2014).
27 Chilton, N. F. et al. Single molecule magnetism in a family of mononuclear β-diketonate lanthanide(iii) complexes: rationalization of magnetic anisotropy in complexes of low symmetry. Chem. Sci. 4, 1719, doi:10.1039/c3sc22300k (2013).
28 Jiang, S. D., Wang, B. W., Su, G., Wang, Z. M. & Gao, S. A mononuclear dysprosium complex featuring single-molecule-magnet behavior. Angew. Chem. Int. Ed. 49, 7448-7451, doi:10.1002/anie.201004027 (2010).
29 Li, D. P. et al. Distinct magnetic dynamic behavior for two polymorphs of the same Dy(III) complex. Chemical communications 47, 6867-6869, doi:10.1039/c1cc11659b (2011).
30 Liu, C. M., Zhang, D. Q. & Zhu, D. B. Field-induced single-ion magnets based on enantiopure chiral beta-diketonate ligands. Inorganic chemistry 52, 8933-8940, doi:10.1021/ic4011218 (2013).
31 Ma, Y. et al. Pyrazine-bridged Dy2 single-molecule magnet with a large anisotropic barrier. Chemical communications 46, 8264-8266, doi:10.1039/c0cc01423k (2010).
32 Sun, W. B. et al. Series of dinuclear and tetranuclear lanthanide clusters encapsulated by salen-type and beta-diketionate ligands: single-molecule magnet and fluorescence properties. Dalton transactions 42, 13397-13403, doi:10.1039/c3dt51227d (2013).
33 Wang, Y. L. et al. Syntheses, structures, and magnetic and luminescence properties of a new Dy(III)-based single-ion magnet. Inorganic chemistry 52, 7380-7386, doi:10.1021/ic400006n (2013).
34 Zhu, J. et al. Local coordination geometry perturbed beta-diketone dysprosium single-ion magnets. Inorganic chemistry 53, 8895-8901, doi:10.1021/ic500501r (2014).
35 Ding, Y.-S., Chilton Nicholas, F., Winpenny Richard, E. P. & Zheng, Y.-Z. On Approaching the Limit of Molecular Magnetic Anisotropy: A Near-Perfect Pentagonal Bipyramidal Dysprosium(III) Single-Molecule Magnet. Angewandte Chemie International Edition 55, 16071-16074, doi:10.1002/anie.201609685 (2016).
36 Pugh, T., Chilton Nicholas, F. & Layfield Richard, A. A Low-Symmetry Dysprosium Metallocene Single-Molecule Magnet with a High Anisotropy Barrier. Angewandte Chemie International Edition 55, 11082-11085, doi:10.1002/anie.201604346 (2016).
37 Dong, H. M., Li, H. Y., Zhang, Y. Q., Yang, E. C. & Zhao, X. J. Magnetic Relaxation Dynamics of a Centrosymmetric Dy2 Single-Molecule Magnet Triggered by Magnetic-Site Dilution and External Magnetic Field. Inorg Chem 56, 5611-5622, doi:10.1021/acs.inorgchem.6b03089 (2017).
38 Harriman, K. L., Brosmer, J. L., Ungur, L., Diaconescu, P. L. & Murugesu, M. Pursuit of Record Breaking Energy Barriers: A Study of Magnetic Axiality in Diamide Ligated Dy(III) Single-Molecule Magnets. J Am Chem Soc 139, 1420-1423, doi:10.1021/jacs.6b12374 (2017).
39 Chen, Y.-C. et al. Dynamic Magnetic and Optical Insight into a High Performance Pentagonal Bipyramidal DyIII Single-Ion Magnet. Chemistry – A European Journal 23, 5708-5715, doi:10.1002/chem.201606029 (2017).
40 Xiong, J. et al. Hydroxide-bridged five-coordinate Dy(III) single-molecule magnet exhibiting the record thermal relaxation barrier of magnetization among lanthanide-only dimers. Chem Sci 8, 1288-1294, doi:10.1039/c6sc03621j (2017).
41 Liu, J. L. et al. Desolvation-Driven 100-Fold Slow-down of Tunneling Relaxation Rate in Co(II)-Dy(III) Single-Molecule Magnets through a Single-Crystal-to-Single-Crystal Process. Scientific reports 5, 16621, doi:10.1038/srep16621 (2015).
42 Liu, J. L. et al. A heterometallic Fe(II)-Dy(III) single-molecule magnet with a record anisotropy barrier. Angew. Chem. Int. Ed. 53, 12966-12970, doi:10.1002/anie.201407799 (2014).
43 陳瑋(2016),「鎳-鑭系金屬簇之合成、結構及磁性研究」,國立成功大學化學所碩士論文
44 林羽珊(2017),「鈷-鑭系金屬簇之合成, 結構及磁性研究」,國立成功大學化學所碩士論文
45 Mori, F. et al. Oximate-Bridged Trinuclear Dy−Cu−Dy Complex Behaving as a Single-Molecule Magnet and Its Mechanistic Investigation. Journal of the American Chemical Society 128, 1440-1441, doi:10.1021/ja057183f (2006).
46 Dolai, M., Ali, M., Titis, J. & Boca, R. Cu(II)-Dy(III) and Co(III)-Dy(III) based single molecule magnets with multiple slow magnetic relaxation processes in the Cu(II)-Dy(III) complex. Dalton Trans 44, 13242-13249, doi:10.1039/c5dt00960j (2015).
47 Heras Ojea María, J. et al. Enhancement of TbIII–CuII Single-Molecule Magnet Performance through Structural Modification. Chemistry – A European Journal 22, 12839-12848, doi:10.1002/chem.201601971 (2016).
48 Oyarzabal, I., Rodriguez-Dieguez, A., Barquin, M., Seco, J. M. & Colacio, E. The effect of the disposition of coordinated oxygen atoms on the magnitude of the energy barrier for magnetization reversal in a family of linear trinuclear Zn-Dy-Zn complexes with a square-antiprism DyO8 coordination sphere. Dalton Trans 46, 4278-4286, doi:10.1039/c7dt00138j (2017).
49 Zhao, F. H. et al. Synthesis, structure, and magnetic properties of Dy(2)Co(2)L(1)(0)(bipy)(2) and Ln(2)Ni(2)L(1)(0)(bipy)(2), Ln = La, Gd, Tb, Dy, and Ho: slow magnetic relaxation in Dy(2)Co(2)L(1)(0)(bipy)(2) and Dy(2)Ni(2)L(1)(0)(bipy)(2). Inorg Chem 53, 9785-9799, doi:10.1021/ic501374q (2014).
50 Levine, R. & Sneed, J. K. The Synthesis of New β-Diketones. Journal of the American Chemical Society 73, 4478-4478, doi:10.1021/ja01153a527 (1951).
51 Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta crystallographica. Section C, Structural chemistry 71, 3-8, doi:10.1107/S2053229614024218 (2015).
52 Alvarez, S. et al. Shape maps and polyhedral interconversion paths in transition metal chemistry. Coord. Chem. Rev. 249, 1693-1708, doi:10.1016/j.ccr.2005.03.031 (2005).
53 Majee, M. C. et al. Synthesis and magneto-structural studies on a new family of carbonato bridged 3d-4f complexes featuring a [CoLn(CO3)] (Ln = La, Gd, Tb, Dy and Ho) core: slow magnetic relaxation displayed by the cobalt(ii)-dysprosium(iii) analogue. Dalton Trans 47, 3425-3439, doi:10.1039/c7dt04389a (2018).
54 Wu, Y., Krzyaniak, M. D., Stoddart, J. F. & Wasielewski, M. R. Spin Frustration in the Triradical Trianion of a Naphthalenediimide Molecular Triangle. J Am Chem Soc 139, 2948-2951, doi:10.1021/jacs.7b00515 (2017).
55 He, F., Tong, M.-L. & Chen, X.-M. Synthesis, Structures, and Magnetic Properties of Heteronuclear Cu(II)−Ln(III) (Ln = La, Gd, or Tb) Complexes. Inorganic chemistry 44, 8285-8292, doi:10.1021/ic0507159 (2005).
56 Singh, M. K., Rajeshkumar, T., Kumar, R., Singh, S. K. & Rajaraman, G. Role of (1,3) {Cu-Cu} Interaction on the Magneto-Caloric Effect of Trinuclear {Cu(II)-Gd(III)-Cu(II)} Complexes: Combined DFT and Experimental Studies. Inorg Chem 57, 1846-1858, doi:10.1021/acs.inorgchem.7b02775 (2018).
57 Costes, J.-P., Dahan, F. & Dupuis, A. Influence of Anionic Ligands (X) on the Nature and Magnetic Properties of Dinuclear LCuGdX3·nH2O Complexes (LH2 Standing for Tetradentate Schiff Base Ligands Deriving from 2-Hydroxy-3-methoxybenzaldehyde and X Being Cl, N3C2, and CF3COO). Inorganic chemistry 39, 165-168, doi:10.1021/ic990865h (2000).
58 Costes, J.-P., Dahan, F., Dupuis, A. & Laurent, J.-P. A Genuine Example of a Discrete Bimetallic (Cu, Gd) Complex: Structural Determination and Magnetic Properties. Inorganic chemistry 35, 2400-2402, doi:10.1021/ic951382q (1996).
59 Chiboub Fellah, F. Z. et al. Binuclear CuLn complexes (LnIII=Gd, Tb, Dy) of alcohol-functionalized bicompartmental Schiff-base ligand. Hydrogen bonding and magnetic behaviors. Inorganica Chimica Acta 439, 24-29, doi:10.1016/j.ica.2015.09.032 (2016).
60 Costes, J. P., Dahan, F., Dupuis, A. & Laurent, J. P. A General Route to Strictly Dinuclear Cu(II)/Ln(III) Complexes. Structural Determination and Magnetic Behavior of Two Cu(II)/Gd(III) Complexes. Inorganic chemistry 36, 3429-3433, doi:10.1021/ic970264v (1997).
61 Chaudhari, A. K., Joarder, B., Riviere, E., Rogez, G. & Ghosh, S. K. Nitrate-bridged "pseudo-double-propeller"-type lanthanide(III)-copper(II) heterometallic clusters: syntheses, structures, and magnetic properties. Inorg Chem 51, 9159-9161, doi:10.1021/ic3012876 (2012).
62 Novitchi, G. et al. Hetero di- and trinuclear Cu–Gd complexes with trifluoroacetate bridges: synthesis, structural and magnetic studies. Dalton transactions, 1194-1200, doi:10.1039/B312186K (2004).
63 Costes, J.-P., Dahan, F., Dupuis, A. & Laurent, J.-P. Structural studies of a dinuclear (Cu, Gd) and two trinuclear (Cu2, Ln) complexes (Ln=Ce, Er). Magnetic properties of two original (Cu, Gd) complexes. New Journal of Chemistry 22, 1525-1529, doi:10.1039/A803125H (1998).
64 Hamamatsu, T. et al. Synthesis and Magnetic Property of Copper(II)–Lanthanide(III) Complexes [{CuIILLnIII(o-van)(CH3COO)(MeOH)}2]·2H2O (LnIII= GdIII, TbIII, and DyIII; H3L = 1-(2-Hydroxybenzamido)-2-(2-hydroxy-3-methoxybenzylideneamino)ethane;o-van = 3-Methoxysalicylaldehydato). Bulletin of the Chemical Society of Japan 80, 523-529, doi:10.1246/bcsj.80.523 (2007).
65 Heras Ojea, M. J. et al. Enhancement of TbIII–CuII Single‐Molecule Magnet Performance through Structural Modification. Chemistry–A European Journal 22, 12839-12848 (2016).
66 Ramade, I., Kahn, O., Jeannin, Y. & Robert, F. Design and Magnetic Properties of a Magnetically Isolated GdIIICuII Pair. Crystal Structures of [Gd (hfa) 3Cu (salen)],[Y (hfa) 3Cu (salen)],[Gd (hfa) 3Cu (salen)(Meim)], and [La (hfa) 3 (H2O) Cu (salen)][hfa= Hexafluoroacetylacetonato, salen= N, N ‘-Ethylenebis (salicylideneaminato), Meim= 1-Methylimidazole]. Inorganic chemistry 36, 930-936 (1997).
67 Sasaki, M. et al. Synthesis, structure, and magnetic properties of discrete d–f heterodinuclear complexes designed from tetrahedrally distorted [Cu (salabza)](H 2 salabza= N, N′-bis (salicylidene)-2-aminobenzylamine) and [Ln (hfac) 3](Hhfac= 1, 1, 1, 5, 5, 5-hexafluoroacetylacetone, Ln= Gd or Lu). Journal of the Chemical Society, Dalton Transactions, 259-263 (2000).
68 Aronica, C. et al. Cubane Variations: Syntheses, Structures, and Magnetic Property Analyses of Lanthanide (III)− Copper (II) Architectures with Controlled Nuclearities. Inorganic chemistry 46, 6108-6119 (2007).
69 Biswas, S. et al. Heterometallic [Cu2Ln3] (Ln = DyIII, GdIII and HoIII) and [Cu4Ln2] (Ln = DyIII and HoIII) Compounds: Synthesis, Structure, and Magnetism. European Journal of Inorganic Chemistry 2017, 1128-1128, doi:10.1002/ejic.201700102 (2017).
70 Aubin, S. M. J. et al. Reduced Anionic Mn12 Molecules with Half-Integer Ground States as Single-Molecule Magnets. Inorganic chemistry 38, 5329-5340, doi:10.1021/ic990613g (1999).
71 Cole, K. S. & Cole, R. H. Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics. J. Chem. Phys. 9, 341-351, doi:10.1063/1.1750906 (1941).
72 Arauzo, A. et al. Structural and magnetic properties of some lanthanide (Ln = Eu(iii), Gd(iii) and Nd(iii)) cyanoacetate polymers: field-induced slow magnetic relaxation in the Gd and Nd substitutions. Dalton Trans 43, 12342-12356, doi:10.1039/c4dt01104j (2014).
73 Velkos, G. et al. Giant exchange coupling and field-induced slow relaxation of magnetization in Gd2@C79N with a single-electron Gd-Gd bond. Chem Commun (Camb) 54, 2902-2905, doi:10.1039/c8cc00112j (2018).
74 Yoshida, T. et al. Field-Induced Slow Magnetic Relaxation of Gd(III) Complex with a Pt-Gd Heterometallic Bond. Chemistry 23, 4551-4556, doi:10.1002/chem.201700886 (2017).
75 Bartolomé, J. et al. Magnetostructural correlations in the tetranuclear series of{Fe3LnO2}butterfly core clusters: Magnetic and Mössbauer spectroscopic study. Phys. Rev. B 80, doi:10.1103/PhysRevB.80.014430 (2009).
76 Ishikawa, R., Miyamoto, R., Nojiri, H., Breedlove, B. K. & Yamashita, M. Slow relaxation of the magnetization of an Mn(III) single ion. Inorganic chemistry 52, 8300-8302, doi:10.1021/ic401351w (2013).
77 Holmberg, R. J., Korobkov, I. & Murugesu, M. Enchaining EDTA-chelated lanthanide molecular magnets into ordered 1D networks. RSC Advances 6, 72510-72518, doi:10.1039/c6ra09831b (2016).
78 Yang, C. I., Hung, S. P., Lee, G. H., Nakano, M. & Tsai, H. L. Slow magnetic relaxation in an octanuclear manganese chain. Inorg Chem 49, 7617-7619, doi:10.1021/ic100580g (2010).
79 Chandrasekhar, V., Dey, A., Das, S., Rouzieres, M. & Clerac, R. Syntheses, structures, and magnetic properties of a family of heterometallic heptanuclear [Cu5Ln2] (Ln = Y(III), Lu(III), Dy(III), Ho(III), Er(III), and Yb(III)) complexes: observation of SMM behavior for the Dy(III) and Ho(III) analogues. Inorg Chem 52, 2588-2598, doi:10.1021/ic302614k (2013).
80 Chopin, N., Novitchi, G., Médebielle, M. & Pilet, G. A versatile ethanolamine-derived trifluoromethyl enaminone ligand for the elaboration of nickel(II) and copper(II)–dysprosium(III) multinuclear complexes with magnetic properties. Journal of Fluorine Chemistry 179, 169-174, doi:10.1016/j.jfluchem.2015.06.023 (2015).
81 Escobar, L. B. et al. New families of hetero-tri-spin 2p-3d-4f complexes: synthesis, crystal structures, and magnetic properties. Inorg Chem 53, 7508-7517, doi:10.1021/ic5008044 (2014).
82 Kühne, I. A. et al. Stepwise Investigation of the Influences of Steric Groups versus Counterions To Target Cu/Dy Complexes. Crystal Growth & Design 17, 5178-5190, doi:10.1021/acs.cgd.7b00648 (2017).
83 Kuhne, I. A., Kostakis, G. E., Anson, C. E. & Powell, A. K. An Undecanuclear Ferrimagnetic Cu9Dy2 Single Molecule Magnet Achieved through Ligand Fine-Tuning. Inorg Chem 55, 4072-4074, doi:10.1021/acs.inorgchem.6b00490 (2016).
84 Liu, J. L. et al. Two 3d-4f nanomagnets formed via a two-step in situ reaction of picolinaldehyde. Chem Commun (Camb) 49, 6549-6551, doi:10.1039/c3cc43200a (2013).
85 Modak, R. et al. Heterometallic Cu(II)-Dy(III) Clusters of Different Nuclearities with Slow Magnetic Relaxation. Inorg Chem 55, 691-699, doi:10.1021/acs.inorgchem.5b02107 (2016).
86 Sopasis, G. J. et al. Heptanuclear heterometallic [Cu6Ln] clusters: trapping lanthanides into copper cages with artificial amino acids. Inorg Chem 51, 5911-5918, doi:10.1021/ic300538q (2012).
87 Zhang, H. et al. Synthesis, Structures, and Magnetic Properties of Three Decanuclear Ln2Cu8 Clusters of Alkylsulfonate. Crystal Growth & Design 13, 2493-2498, doi:10.1021/cg400206s (2013).
88 Chilton, N. F., Goodwin, C. A., Mills, D. P. & Winpenny, R. E. The first near-linear bis(amide) f-block complex: a blueprint for a high temperature single molecule magnet. Chem Commun (Camb) 51, 101-103, doi:10.1039/c4cc08312a (2015).
89 Moreno Pineda, E. et al. Direct measurement of dysprosium(III)...dysprosium(III) interactions in a single-molecule magnet. Nature communications 5, 5243, doi:10.1038/ncomms6243 (2014).
90 Bogani, L., Sangregorio, C., Sessoli, R. & Gatteschi, D. Molecular engineering for single-chain-magnet behavior in a one-dimensional dysprosium-nitronyl nitroxide compound. Angew Chem Int Ed Engl 44, 5817-5821, doi:10.1002/anie.200500464 (2005).
91 Zheng, Y. Z., Tong, M. L., Zhang, W. X. & Chen, X. M. Assembling magnetic nanowires into networks: a layered CoII carboxylate coordination polymer exhibiting single-chain-magnet behavior. Angew Chem Int Ed Engl 45, 6310-6314, doi:10.1002/anie.200601349 (2006).
92 Wang, K. et al. Two Types of Cu-Ln Heterometallic Coordination Polymers with 2-Hydroxyisophthalate: Syntheses, Structures, and Magnetic Properties. Crystal Growth & Design 15, 2883-2890, doi:10.1021/acs.cgd.5b00327 (2015).
93 Liu, Y.-A., Wang, C.-Y., Zhang, M. & Song, X.-Q. Structures and magnetic properties of cyclic heterometallic tetranuclear clusters. Polyhedron 127, 278-286, doi:10.1016/j.poly.2017.02.007 (2017).
校內:2023-08-20公開