簡易檢索 / 詳目顯示

研究生: 沈承輝
Shen, Cheng-Hui
論文名稱: 具水穩定性之金屬有機骨架於電化學系統之應用
Water-Stable Metal–Organic Frameworks for Electrochemical Applications
指導教授: 龔仲偉
Kung, Chung-Wei
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 252
中文關鍵詞: 金屬有機骨架水穩定性超級電容器電化學感測器電化學硝酸根產氨
外文關鍵詞: metal–organic frameworks, water stability, supercapacitors, electrochemical sensors, electrochemical nitrate-to-ammonia reduction
ORCID: 0009000429971094
相關次數: 點閱:24下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文合成多種具備良好水穩定性的金屬有機骨架及其複合材料,並將其沉積於導電基材上,所得到的修飾電極再接著應用於水相電化學系統當中,包含超級電容器、電化學感測器及電催化反應等。
    由於大多數金屬有機骨架不具備良好的導電性,限制其直接利用於電化學系統當中,因此本論文首先將錳離子修飾於三種結構不同的以鋯為基底之金屬有機骨架(Zr-MOF-808, Zr-UiO-66, Zr-CAU-24),並探討其在電化學系統中基於氧化還原躍遷機制的電荷傳遞過程。研究成果顯示透過錳離子於三價跟四價之間的電化學反應,可以使得電荷在硫酸鈉水溶液中進行氧化還原躍遷以傳遞電荷於骨架當中。而透過調控電解液的濃度,氧化還原躍遷的速率決定步驟由離子擴散轉變為電子傳遞;此外,錳離子修飾的Zr-MOF-808結構具有較大孔徑,可以達到較高的擴散係數。本研究針對以氧化還原躍遷機制在金屬有機骨架上傳遞電荷於水相系統中,提供結構的選擇與材料設計的方向。
    接續前一段落,本論文進一步探討以具氧化還原活性的鈰離子作為節點之金屬有機骨架(Ce-MOF-808)在水相電解液中的氧化還原躍遷行為,該材料亦擁有與錳修飾的Zr-MOF-808相同的拓撲結構。研究成果顯示,Ce-MOF-808在硫酸鈉水溶液的電化學系統當中亦具有電化學活性,但其氧化還原躍遷行為十分有限。為了使更多的鈰離子參與電化學反應,本論文將Ce-MOF-808晶體生長於具有羧酸基的奈米碳管表面,藉由奈米碳管本身具有的導電特性可以將電子快速地於晶體之間傳遞,其所形成的複合材料被作為超級電容器的電極材料,並可以展現出大幅提升的比電容值。
    而除了作為需具備良好電荷傳遞能力的電化學活性薄膜外,本論文亦提出水穩定性金屬有機骨架的另一種應用方向:將其作為調控電極表面局部環境以改變電化學反應速率的非活性薄膜。類似概念的材料為富含負電荷磺酸基團的Nafion聚合物,其常作為修飾薄膜應用在有涉及帶電荷反應物參與的電化學系統當中。在本論文中,磺酸基團被後修飾於Zr-MOF-808孔洞當中,所得到的材料可以視為是一種具高度孔洞性的Nafion薄膜並應用在電化學系統,進而取代傳統質傳受阻礙的Nafion薄膜。透過將此磺酸基團修飾的金屬有機骨架薄膜塗佈於對多巴胺有電化學活性的電極表面上,該修飾電極憑藉磺酸基團帶負電荷的特性與金屬有機骨架的高度孔洞性,在對正電荷的多巴胺感測靈敏度以及負電荷的干擾物選擇性(如抗壞血酸與尿酸)方面皆顯著地優於常用的Nafion薄膜。
    另一方面,除了將電荷於金屬有機骨架薄膜的傳遞納入考量之外,亦需要考慮到電化學過程中反應物於薄膜的擴散。儘管金屬有機骨架具備相互連通的孔洞性結構,但其大多數為微孔材料,往往會阻礙體積較大的反應物擴散於孔洞當中,並造成電化學系統的反應位點受限。在本論文中,透過軟模板劑將有規律的中孔引入以鈰為基底之金屬有機骨架(UiO-66(Ce))晶體當中,並進一步把具有硝酸根電化學催化產氨的銅活性位點安裝於骨架之中。透過中孔幫助反應物擴散於修飾薄膜當中,其所製備的電極可以比僅有微孔的材料所製備的電極展現出更高的法拉第效率與產氨速率。本研究強調在金屬有機骨架晶體開創規律的中孔結構對於反應物質傳效率的影響,並進而提升其在電化學催化的表現。

    In this dissertation, various water-stable metal–organic frameworks (MOFs) and MOF-based composites were synthesized and deposited on conducting substrates. The resulting modified electrodes were applied in a range of aqueous electrochemical systems, including supercapacitors, electrochemical sensors, and electrocatalytic reactions.
    Since the electrically insulating nature of most MOFs limits their direct use in electrochemical applications, a charge-transport pathway, redox-hopping process, is first investigated within three topologically distinct manganese-decorated zirconium-based MOFs (Zr-MOFs) in this dissertation. The hopping-based electrochemical reaction between the installed Mn(III) and Mn(IV) occurring within thin films of these MOFs in Na2SO4 aqueous electrolytes is studied. By adjusting the concentration of counter ions in the electrolyte, the rate-determining step of the redox-hopping process can be tuned from ionic transport to electronic transport, and the manganese-decorated zirconium-based MOF-808 (Zr-MOF-808), which possesses the largest pore size among the studied materials, exhibits the highest value of apparent diffusivity. Findings here shed light on the selection of topology of MOFs for applications relying on redox-hopping processes within MOF thin films in aqueous electrolytes.
    Thereafter, the redox-hopping behavior of cerium-based MOF-808 (Ce-MOF-808), which exhibits the same topology as manganese-decorated Zr-MOF-808 but possesses redox-active hexa-cerium nodes, is investigated in aqueous electrolytes. Results here suggest that pristine Ce-MOF-808 is electrochemically active but exhibits a limited charge-transport behavior. To render more cerium sites electrochemically addressable, nanocrystals of Ce-MOF-808 are directly grown on the surface of carboxylic acid-functionalized carbon nanotubes (CNTs). As a demonstration, Ce-MOF-808, CNT, and nanocomposites are used as electrode materials for supercapacitors, where the capacitive performance of the redox-active Ce-MOF-808 can be significantly boosted with the facile electronic conduction between MOF crystals provided by CNTs.
    Instead of serving as electrochemically active thin films which require efficient charge transport between active units, another concept for using such water-stable MOFs is to apply them as electrochemically “inactive” thin films for modulating the microenvironment near the underlying electrocatalyst surface and adjusting the reaction rates of complex electrochemical reactions. Nafion, a polymer containing negatively charged sulfonate groups, is commonly used as a modified thin film in electrochemical reactions involving charged reactants. Accordingly, enriched sulfonate groups are immobilized within Zr-MOF-808, and the resulting material is proposed as a “porous Nafion” ─ an appealing alternative to the conventional Nafion coating. Thereafter, such sulfonate-grafted MOF thin film is coated on the active electrode surface for electrochemical sensing of dopamine. With its negative charge and high porosity, the sulfonate-grafted MOF remarkably outperforms the commercially used Nafion thin film in both sensitivity toward positively charged dopamine and selectivity against negatively charged interferents (e.g., ascorbic acid and uric acid).
    On the other hand, beyond the issue of charge transport, mass transport behavior during electrochemical processes should also be considered. Although MOFs possess interconnected porous structures, most MOFs with the inherent microporous nature may hinder the transport of reactants with large molecular sizes, leading to poor activity in electrochemical reactions. Herein, ordered pore engineering of a cerium-based MOF, UiO-66(Ce), is demonstrated by a soft-template strategy, and copper active units are further confined within the framework for electrochemical nitrate reduction to ammonia. By providing mesoporous channels with facile diffusion of reactants, the resulting material achieves a higher Faradaic efficiency and ammonia production rate than the one without mesopores. Findings here highlight the importance of pore engineering in MOF-based electrocatalysts for facilitating mass transport of reactants to enhance the electrocatalytic activity.

    中文摘要 I Abstract III 致謝 VI Table of contents VIII List of tables XII List of figures XIV Nomenclatures XXVIII Chapter 1 Introduction 1 1.1 Overview of water-stable metal–organic frameworks as electrode materials 1 1.1.1 Electrochemical system and electrode materials 1 1.1.2 Water-stable metal–organic frameworks 3 1.2 Introductions to individual electrochemical applications 9 1.2.1 Supercapacitors 9 1.2.2 Electrochemical sensors 12 1.2.3 Electrocatalysis in NRA 15 1.3 Scope of this dissertation 18 Chapter 2 Probing the electronic and ionic transport in topologically distinct redox-active metal–organic frameworks in aqueous electrolytes 21 2.1 Introduction of Chapter 2 21 2.2 Experimental procedure 24 2.2.1 Chemicals 24 2.2.2 Instrumentations 24 2.2.3 Synthesis of MOF-808, defective UiO-66 and CAU-24 25 2.2.4 Installation of manganese sites in MOF-808, defective UiO-66 and CAU-24 27 2.2.5 Preparation of pellets and thin films 28 2.2.6 Conductivity and electrochemical measurements 28 2.3 Results and discussion 29 2.3.1 Materials characterizations 29 2.3.2 Cyclic voltammetric studies 43 2.3.3 Chronoamperometric studies 48 2.4 Conclusion of Chapter 2 59 Chapter 3 Cerium-based metal–organic framework nanocrystals interconnected by carbon nanotubes for boosting electrochemical capacitor performance 61 3.1 Introduction of Chapter 3 61 3.2 Experimental procedure 63 3.2.1 Chemicals 63 3.2.2 Instrumentations 64 3.2.3 Synthesis of Ce-MOF-808 nanocrystals and nanocomposites 64 3.2.4 Preparation of pellets and thin films 65 3.2.5 Conductivity and electrochemical measurements 66 3.3 Results and discussion 67 3.3.1 Materials characterizations 67 3.3.2 Node-based redox hopping in Ce-MOF-808 77 3.3.3 Pseudocapacitive performances of the nanocomposites 82 3.4 Conclusion of Chapter 3 89 Chapter 4 Sulfonate-grafted metal–organic framework ─ A porous alternative to Nafion for electrochemical sensors 91 4.1 Introduction of Chapter 4 91 4.2 Experimental procedure 94 4.2.1 Chemicals 94 4.2.2 Instrumentations 95 4.2.3 Synthesis of MOF-808 and SO3-MOF-808 96 4.2.4 Preparation of thin films 96 4.2.5 Electrochemical measurements 97 4.3 Results and discussion 98 4.3.1 Materials characterizations 98 4.3.2 Electrochemical sensing performances for dopamine 103 4.4 Conclusion of Chapter 4 116 Chapter 5 Unlocking coordination sites of metal−organic frameworks for high-density and accessible copper nanoparticles toward electrochemical nitrate reduction to ammonia 118 5.1 Introduction of Chapter 5 118 5.2 Experimental procedure 123 5.2.1 Chemicals 123 5.2.2 Instrumentations 124 5.2.3 Synthesis of MUiO-66(Ce) and UiO-66(Ce) 125 5.2.4 Installation of copper sites in MUiO-66(Ce) and UiO-66(Ce) 126 5.2.5 Preparation of thin films 127 5.2.6 Titration experiments 127 5.2.7 Electrochemical measurements 128 5.2.8 Product analysis 129 5.2.9 Isotope labeling experiments 130 5.2.10 Calculation of the yield rate, selectivity, conversion ratio, and Faradaic efficiency 131 5.2.11 Computational methods 132 5.3 Results and discussion 133 5.3.1 Materials characterizations 133 5.3.2 Electrocatalytic activities toward nitrate reduction to ammonia 153 5.4 Conclusion of Chapter 5 170 Chapter 6 Comprehensive discussion, conclusions, and suggestions 172 6.1 Comprehensive discussions 172 6.2 General conclusions 174 6.3 Suggestions 176 References 179 Appendix A Curriculum Vitae 203

    [1] J. M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 414, 359-367, 2001.
    [2] P. Simon and Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater., 7, 845-854, 2008.
    [3] A. J. Bard and M. A. Fox, Artificial photosynthesis: solar splitting of water to hydrogen and oxygen, Acc. Chem. Res., 28, 141-145, 1995.
    [4] E. Bakker and M. Telting-Diaz, Electrochemical sensors, Anal. Chem., 74, 2781-2800, 2002.
    [5] P. Bertoncello, I. Ciani, F. Li and P. R. Unwin, Measurement of apparent diffusion coefficients within ultrathin Nafion Langmuir−Schaefer films: comparison of a novel scanning electrochemical microscopy approach with cyclic voltammetry, Langmuir, 22, 10380-10388, 2006.
    [6] M. Shi and F. C. Anson, Rapid oxidation of Ru(NH3)63+ by Os(bpy)33+ within Nafion coatings on electrodes, Langmuir, 12, 2068-2075, 1996.
    [7] H. Furukawa, K. E. Cordova, M. O’Keeffe and O. M. Yaghi, The chemistry and applications of metal–organic frameworks, Science, 341, 1230444, 2013.
    [8] S. Kitagawa, R. Kitaura and S. i. Noro, Functional porous coordination polymers, Angew. Chem., Int. Ed., 43, 2334-2375, 2004.
    [9] M. B. Majewski, A. W. Peters, M. R. Wasielewski, J. T. Hupp and O. K. Farha, Metal–organic frameworks as platform materials for solar fuels catalysis, ACS Energy Lett., 3, 598-611, 2018.
    [10] D. Sheberla, J. C. Bachman, J. S. Elias, C.-J. Sun, Y. Shao-Horn and M. Dincă, Conductive MOF electrodes for stable supercapacitors with high areal capacitance, Nat. Mater., 16, 220-224, 2017.
    [11] Z. Liang, C. Qu, W. Guo, R. Zou and Q. Xu, Pristine metal–organic frameworks and their composites for energy storage and conversion, Adv. Mater., 30, 1702891, 2018.
    [12] L. J. Murray, M. Dincă and J. R. Long, Hydrogen storage in metal–organic frameworks, Chem. Soc. Rev., 38, 1294-1314, 2009.
    [13] J.-R. Li, J. Sculley and H.-C. Zhou, Metal–organic frameworks for separations, Chem. Rev., 112, 869-932, 2012.
    [14] Y. Cheng, S. J. Datta, S. Zhou, J. Jia, O. Shekhah and M. Eddaoudi, Advances in metal–organic framework-based membranes, Chem. Soc. Rev., 51, 8300-8350, 2022.
    [15] T. Chen and D. Zhao, Post-synthetic modification of metal–organic framework-based membranes for enhanced molecular separations, Coord. Chem. Rev., 491, 215259, 2023.
    [16] J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen and J. T. Hupp, Metal–organic framework materials as catalysts, Chem. Soc. Rev., 38, 1450-1459, 2009.
    [17] L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne and J. T. Hupp, Metal–organic framework materials as chemical sensors, Chem. Rev., 112, 1105-1125, 2012.
    [18] S. Pal, S.-S. Yu and C.-W. Kung, Group 4 metal-based metal–organic frameworks for chemical sensors, Chemosensors, 9, 306, 2021.
    [19] I. M. Hönicke, I. Senkovska, V. Bon, I. A. Baburin, N. Bönisch, S. Raschke, J. D. Evans and S. Kaskel, Balancing mechanical stability and ultrahigh porosity in crystalline framework materials, Angew. Chem., Int. Ed., 57, 13780-13783, 2018.
    [20] O. K. Farha, I. Eryazici, N. C. Jeong, B. G. Hauser, C. E. Wilmer, A. A. Sarjeant, R. Q. Snurr, S. T. Nguyen, A. O. z. r. Yazaydın and J. T. Hupp, Metal–organic framework materials with ultrahigh surface areas: is the sky the limit?, J. Am. Chem. Soc., 134, 15016-15021, 2012.
    [21] M. Kalaj and S. M. Cohen, Postsynthetic modification: an enabling technology for the advancement of metal–organic frameworks, ACS Cent. Sci., 6, 1046-1057, 2020.
    [22] T. Islamoglu, S. Goswami, Z. Li, A. J. Howarth, O. K. Farha and J. T. Hupp, Postsynthetic tuning of metal–organic frameworks for targeted applications, Acc. Chem. Res., 50, 805-813, 2017.
    [23] S. Jeoung, S. Kim, M. Kim and H. R. Moon, Pore engineering of metal–organic frameworks with coordinating functionalities, Coord. Chem. Rev., 420, 213377, 2020.
    [24] A. J. Howarth, Y. Liu, P. Li, Z. Li, T. C. Wang, J. T. Hupp and O. K. Farha, Chemical, thermal and mechanical stabilities of metal–organic frameworks, Nat. Rev. Mater., 1, 1-15, 2016.
    [25] N. C. Burtch, H. Jasuja and K. S. Walton, Water stability and adsorption in metal–organic frameworks, Chem. Rev., 114, 10575-10612, 2014.
    [26] C. H. Shen and C. W. Kung, Stable and electrochemically “inactive” metal−organic frameworks for electrocatalysis, ChemElectroChem, 10, e202300375, 2023.
    [27] C.-H. Wu, K.-C. Wu, C.-H. Shen and C.-W. Kung, Zirconium-based metal–organic frameworks for electrochemical energy storage, Coord. Chem. Rev., 538, 216704, 2025.
    [28] C. Qu, Y. Jiao, B. Zhao, D. Chen, R. Zou, K. S. Walton and M. Liu, Nickel-based pillared MOFs for high-performance supercapacitors: design, synthesis and stability study, Nano Energy, 26, 66-73, 2016.
    [29] W. Zheng and L. Y. S. Lee, Metal–organic frameworks for electrocatalysis: catalyst or precatalyst?, ACS Energy Lett., 6, 2838-2843, 2021.
    [30] D. O. Miles, D. Jiang, A. D. Burrows, J. E. Halls and F. Marken, Conformal transformation of [Co(bdc)(DMF)] (Co-MOF-71, bdc=1,4-benzenedicarboxylate, DMF=N,N-dimethylformamide) into porous electrochemically active cobalt hydroxide, Electrochem. Commun., 27, 9-13, 2013.
    [31] W. Zheng, M. Liu and L. Y. S. Lee, Electrochemical instability of metal–organic frameworks: in situ spectroelectrochemical investigation of the real active sites, ACS Catal., 10, 81-92, 2019.
    [32] K. F. Babu, M. A. Kulandainathan, I. Katsounaros, L. Rassaei, A. D. Burrows, P. R. Raithby and F. Marken, Electrocatalytic activity of BasoliteTM F300 metal−organic framework structures, Electrochem. Commun., 12, 632-635, 2010.
    [33] J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga and K. P. Lillerud, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability, J. Am. Chem. Soc., 130, 13850-13851, 2008.
    [34] S. Yuan, J.-S. Qin, C. T. Lollar and H.-C. Zhou, Stable metal–organic frameworks with group 4 metals: current status and trends, ACS Cent. Sci., 4, 440-450, 2018.
    [35] Z. Hu, Y. Wang and D. Zhao, The chemistry and applications of hafnium and cerium (IV) metal–organic frameworks, Chem. Soc. Rev., 50, 4629-4683, 2021.
    [36] H. Beyzavi, R. C. Klet, S. Tussupbayev, J. Borycz, N. A. Vermeulen, C. J. Cramer, J. F. Stoddart, J. T. Hupp and O. K. Farha, A hafnium-based metal–organic framework as an efficient and multifunctional catalyst for facile CO2 fixation and regioselective and enantioretentive epoxide activation, J. Am. Chem. Soc., 136, 15861-15864, 2014.
    [37] W. H. Ho, S.-C. Li, Y.-C. Wang, T.-E. Chang, Y.-T. Chiang, Y.-P. Li and C.-W. Kung, Proton-conductive cerium-based metal–organic frameworks, ACS Appl. Mater. Interfaces, 13, 55358-55366, 2021.
    [38] S. Dai, E. Montero-Lanzuela, A. Tissot, H. G. Baldoví, H. García, S. Navalón and C. Serre, Room temperature design of Ce(IV)-MOFs: from photocatalytic HER and OER to overall water splitting under simulated sunlight irradiation, Chem. Sci., 14, 3451-3461, 2023.
    [39] M. T. Nord, A. S. Plaman, L. N. Zakharov, O. K. Farha and M. Nyman, Acid stability of MIV (M= Zr, Hf, Ce, Th) UiO-66 MOFs from a solution perspective, ACS Appl. Mater. Interfaces, 17, 21357-21370, 2025.
    [40] J.-H. Li, Y.-S. Wang, Y.-C. Chen and C.-W. Kung, Metal–organic frameworks toward electrocatalytic applications, Appl. Sci., 9, 2427, 2019.
    [41] X. Zhang, M. C. Wasson, M. Shayan, E. K. Berdichevsky, J. Ricardo-Noordberg, Z. Singh, E. K. Papazyan, A. J. Castro, P. Marino and Z. Ajoyan, A historical perspective on porphyrin-based metal–organic frameworks and their applications, Coord. Chem. Rev., 429, 213615, 2021.
    [42] L. S. Xie, G. Skorupskii and M. Dinca, Electrically conductive metal–organic frameworks, Chem. Rev., 120, 8536-8580, 2020.
    [43] C. H. Hendon, D. Tiana and A. Walsh, Conductive metal–organic frameworks and networks: fact or fantasy?, Phys. Chem. Chem. Phys., 14, 13120-13132, 2012.
    [44] B. D. McCarthy, A. M. Beiler, B. A. Johnson, T. Liseev, A. T. Castner and S. Ott, Analysis of electrocatalytic metal–organic frameworks, Coord. Chem. Rev., 406, 213137, 2020.
    [45] C.-W. Kung, S. Goswami, I. Hod, T. C. Wang, J. Duan, O. K. Farha and J. T. Hupp, Charge transport in zirconium-based metal–organic frameworks, Acc. Chem. Res., 53, 1187-1195, 2020.
    [46] S. Lin, P. M. Usov and A. J. Morris, The role of redox hopping in metal–organic framework electrocatalysis, Chem. Commun., 54, 6965-6974, 2018.
    [47] A. T. Castner, H. Su, E. Svensson Grape, A. K. Inge, B. A. Johnson, M. r. S. Ahlquist and S. Ott, Microscopic insights into cation-coupled electron hopping transport in a metal–organic framework, J. Am. Chem. Soc., 144, 5910-5920, 2022.
    [48] I. Hod, M. D. Sampson, P. Deria, C. P. Kubiak, O. K. Farha and J. T. Hupp, Fe-porphyrin-based metal–organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO2, ACS Catal., 5, 6302-6309, 2015.
    [49] S. R. Ahrenholtz, C. C. Epley and A. J. Morris, Solvothermal preparation of an electrocatalytic metalloporphyrin MOF thin film and its redox hopping charge-transfer mechanism, J. Am. Chem. Soc., 136, 2464-2472, 2014.
    [50] C. Wang, J. Kim, J. Tang, M. Kim, H. Lim, V. Malgras, J. You, Q. Xu, J. Li and Y. Yamauchi, New strategies for novel MOF-derived carbon materials based on nanoarchitectures, Chem, 6, 19-40, 2020.
    [51] H. Konnerth, B. M. Matsagar, S. S. Chen, M. H. Prechtl, F.-K. Shieh and K. C.-W. Wu, Metal–organic framework (MOF)-derived catalysts for fine chemical production, Coord. Chem. Rev., 416, 213319, 2020.
    [52] R. R. Salunkhe, Y. V. Kaneti and Y. Yamauchi, Metal–organic framework-derived nanoporous metal oxides toward supercapacitor applications: progress and prospects, ACS Nano, 11, 5293-5308, 2017.
    [53] Z. X. Cai, Z. L. Wang, J. Kim and Y. Yamauchi, Hollow functional materials derived from metal–organic frameworks: synthetic strategies, conversion mechanisms, and electrochemical applications, Adv. Mater., 31, 1804903, 2019.
    [54] C.-W. Kung, P.-C. Han, C.-H. Chuang and K. C.-W. Wu, Electronically conductive metal–organic framework-based materials, APL Mater., 7, 2019.
    [55] B. Le Ouay, M. Boudot, T. Kitao, T. Yanagida, S. Kitagawa and T. Uemura, Nanostructuration of PEDOT in porous coordination polymers for tunable porosity and conductivity, J. Am. Chem. Soc., 138, 10088-10091, 2016.
    [56] K. A. Milakin, S. Gupta, L. Kobera, A. Mahun, M. Konefał, O. Kočková, O. Taboubi, Z. Morávková, J. M. Chin and K. Allahyarli, Effect of a Zr-based metal–organic framework structure on the properties of its composite with polyaniline, ACS Appl. Mater. Interfaces, 15, 23813-23823, 2023.
    [57] C.-W. Kung, Y.-S. Li, M.-H. Lee, S.-Y. Wang, W.-H. Chiang and K.-C. Ho, In situ growth of porphyrinic metal–organic framework nanocrystals on graphene nanoribbons for the electrocatalytic oxidation of nitrite, J. Mater. Chem. A, 4, 10673-10682, 2016.
    [58] D. Micheroni, G. Lan and W. Lin, Efficient electrocatalytic proton reduction with carbon nanotube-supported metal–organic frameworks, J. Am. Chem. Soc., 140, 15591-15595, 2018.
    [59] Y.-C. Wang, Y.-C. Chen, W.-S. Chuang, J.-H. Li, Y.-S. Wang, C.-H. Chuang, C.-Y. Chen and C.-W. Kung, Pore-confined silver nanoparticles in a porphyrinic metal–organic framework for electrochemical nitrite detection, ACS Appl. Nano Mater., 3, 9440-9448, 2020.
    [60] Z. Xu, L. Yang and C. Xu, Pt@UiO-66 heterostructures for highly selective detection of hydrogen peroxide with an extended linear range, Anal. Chem., 87, 3438-3444, 2015.
    [61] Y.-C. Chen, W.-H. Chiang, D. Kurniawan, P.-C. Yeh, K.-i. Otake and C.-W. Kung, Impregnation of graphene quantum dots into a metal–organic framework to render increased electrical conductivity and activity for electrochemical sensing, ACS Appl. Mater. Interfaces, 11, 35319-35326, 2019.
    [62] C.-W. Kung, C. O. Audu, A. W. Peters, H. Noh, O. K. Farha and J. T. Hupp, Copper nanoparticles installed in metal–organic framework thin films are electrocatalytically competent for CO2 reduction, ACS Energy Lett., 2, 2394-2401, 2017.
    [63] S. Mukhopadhyay, R. Shimoni, I. Liberman, R. Ifraemov, I. Rozenberg and I. Hod, Assembly of a metal–organic framework (MOF) membrane on a solid electrocatalyst: introducing molecular‐level control over heterogeneous CO2 reduction, Angew. Chem., Int. Ed., 60, 13423-13429, 2021.
    [64] Y.-N. Chang, C.-H. Shen, C.-W. Huang, M.-D. Tsai and C.-W. Kung, Defective metal–organic framework nanocrystals as signal amplifiers for electrochemical dopamine sensing, ACS Appl. Nano Mater., 6, 3675-3684, 2023.
    [65] Z. Wang, S. Liu, M. Wang, L. Zhang, Y. Jiang, T. Qian, J. Xiong, C. Yang and C. Yan, In situ construction of metal–organic frameworks as smart channels for the effective electrocatalytic reduction of nitrate at ultralow concentrations to ammonia, ACS Catal., 13, 9125-9135, 2023.
    [66] C. Liu, F. Li, L. P. Ma and H. M. Cheng, Advanced materials for energy storage, Adv. Mater., 22, E28-E62, 2010.
    [67] J. B. Goodenough and K.-S. Park, The Li-ion rechargeable battery: a perspective, J. Am. Chem. Soc., 135, 1167-1176, 2013.
    [68] G. Wang, L. Zhang and J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev., 41, 797-828, 2012.
    [69] K. Jost, G. Dion and Y. Gogotsi, Textile energy storage in perspective, J. Mater. Chem. A, 2, 10776-10787, 2014.
    [70] Y. Zhai, Y. Dou, D. Zhao, P. F. Fulvio, R. T. Mayes and S. Dai, Carbon materials for chemical capacitive energy storage, Adv. Mater., 23, 4828-4850, 2011.
    [71] J. Zheng and T. Jow, High energy and high power density electrochemical capacitors, J. Power Sources, 62, 155-159, 1996.
    [72] D.-Q. Liu, S.-H. Yu, S.-W. Son and S.-K. Joo, Electrochemical performance of iridium oxide thin film for supercapacitor prepared by radio frequency magnetron sputtering method, ECS Trans., 16, 103, 2008.
    [73] T. Brousse, M. Toupin, R. Dugas, L. Athouel, O. Crosnier and D. Belanger, Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors, J. Electrochem. Soc., 153, A2171, 2006.
    [74] J. Xu, L. Gao, J. Cao, W. Wang and Z. Chen, Preparation and electrochemical capacitance of cobalt oxide (Co3O4) nanotubes as supercapacitor material, Electrochim. Acta, 56, 732-736, 2010.
    [75] K. C. Liu and M. A. Anderson, Porous nickel oxide/nickel films for electrochemical capacitors, J. Electrochem. Soc., 143, 124, 1996.
    [76] A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld and J. P. Ferraris, Conducting polymers as active materials in electrochemical capacitors, J. Power Sources, 47, 89-107, 1994.
    [77] Y. Jiang and J. Liu, Definitions of pseudocapacitive materials: a brief review, Energy Environ. Mater., 2, 30-37, 2019.
    [78] A. Hulanicki, S. Glab and F. Ingman, Chemical sensors: definitions and classification, Pure Appl. Chem., 63, 1247-1250, 1991.
    [79] J. Baranwal, B. Barse, G. Gatto, G. Broncova and A. Kumar, Electrochemical sensors and their applications: A review, Chemosensors, 10, 363, 2022.
    [80] J. Wang, Modified electrodes for electrochemical sensors, Electroanalysis, 3, 255-259, 1991.
    [81] S. G. Weber and J. T. Long, Detection limits and selectivity in electrochemical detectors, Anal. Chem., 60, 903A-913A, 1988.
    [82] A. Shrivastava and V. B. Gupta, Methods for the determination of limit of detection and limit of quantitation of the analytical methods, Chron. Young Sci., 2, 21-25, 2011.
    [83] H. Karimi‐Maleh, F. Karimi, M. Alizadeh and A. L. Sanati, Electrochemical sensors, a bright future in the fabrication of portable kits in analytical systems, Chem. Rec., 20, 682-692, 2020.
    [84] J. Wang, Electrochemical glucose biosensors, Chem. Rev., 108, 814-825, 2008.
    [85] A. Karim, M. Yasser, A. Ahmad, H. Natsir, A. W. Wahab, S. Fauziah, P. Taba, I. Pratama, A. Rajab and A. N. F. Abubakar, A review: Progress and trend advantage of dopamine electrochemical sensor, J. Electroanal. Chem., 959, 118157, 2024.
    [86] L. Manjakkal, W. Dang, N. Yogeswaran and R. Dahiya, Textile-based potentiometric electrochemical pH sensor for wearable applications, Biosensors, 9, 14, 2019.
    [87] A. Bratov, N. Abramova and A. Ipatov, Recent trends in potentiometric sensor arrays—A review, Anal. Chim. Acta, 678, 149-159, 2010.
    [88] B. Pejcic and R. De Marco, Impedance spectroscopy: Over 35 years of electrochemical sensor optimization, Electrochim. Acta, 51, 6217-6229, 2006.
    [89] L. Tong, L. Wu, E. Su, Y. Li and N. Gu, Recent advances in the application of nanozymes in amperometric sensors: a review, Chemosensors, 11, 233, 2023.
    [90] T. P. Nguy, T. Van Phi, D. T. Tram, K. Eersels, P. Wagner and T. T. Lien, Development of an impedimetric sensor for the label-free detection of the amino acid sarcosine with molecularly imprinted polymer receptors, Sens. Actuators B Chem., 246, 461-470, 2017.
    [91] R. A. Dorledo de Faria, H. Iden, L. G. D. Heneine, T. Matencio and Y. Messaddeq, Non-enzymatic impedimetric sensor based on 3-aminophenylboronic acid functionalized screen-printed carbon electrode for highly sensitive glucose detection, Sensors, 19, 1686, 2019.
    [92] F. Patolsky, A. Lichtenstein and I. Willner, Detection of single-base DNA mutations by enzyme-amplified electronic transduction, Nat. Biotechnol., 19, 253-257, 2001.
    [93] W. Liu, Y. Ma, G. Sun, S. Wang, J. Deng and H. Wei, Molecularly imprinted polymers on graphene oxide surface for EIS sensing of testosterone, Biosens. Bioelectron., 92, 305-312, 2017.
    [94] M. Rafiee, D. J. Abrams, L. Cardinale, Z. Goss, A. Romero-Arenas and S. S. Stahl, Cyclic voltammetry and chronoamperometry: mechanistic tools for organic electrosynthesis, Chem. Soc. Rev., 53, 566-585, 2024.
    [95] G. Davis, Electrochemical techniques for the development of amperometric biosensors, Biosens., 1, 161-178, 1985.
    [96] C. Yang, Q. Lu and S. Hu, A novel nitrite amperometric sensor and its application in food analysis, Electroanalysis, 18, 2188-2193, 2006.
    [97] A. Galant, R. Kaufman and J. Wilson, Glucose: Detection and analysis, Food Chem., 188, 149-160, 2015.
    [98] K. Jackowska and P. Krysinski, New trends in the electrochemical sensing of dopamine, Anal. Bioanal. Chem., 405, 3753-3771, 2013.
    [99] A. Olejnik, J. Karczewski, A. Dołęga, K. Siuzdak and K. Grochowska, Novel approach to interference analysis of glucose sensing materials coated with Nafion, Bioelectrochemistry, 135, 107575, 2020.
    [100] R. F. Vreeland, C. W. Atcherley, W. S. Russell, J. Y. Xie, D. Lu, N. D. Laude, F. Porreca and M. L. Heien, Biocompatible PEDOT: Nafion composite electrode coatings for selective detection of neurotransmitters in vivo, Anal. Chem., 87, 2600-2607, 2015.
    [101] D. Voiry, M. Chhowalla, Y. Gogotsi, N. A. Kotov, Y. Li, R. M. Penner, R. E. Schaak and P. S. Weiss, Best practices for reporting electrocatalytic performance of nanomaterials, ACS Nano, 12, 9635-9638, 2018.
    [102] C. Batchelor-McAuley, Defining the onset potential, Curr. Opin. Electrochem., 37, 101176, 2023.
    [103] D. Anastasiadou, Y. van Beek, E. J. Hensen and M. Costa Figueiredo, Ammonia electrocatalytic synthesis from nitrate, Electrochem. Sci. Adv., 3, e2100220, 2023.
    [104] Y. Zeng, C. Priest, G. Wang and G. Wu, Restoring the nitrogen cycle by electrochemical reduction of nitrate: progress and prospects, Small Methods, 4, 2000672, 2020.
    [105] N. Morlanés, S. P. Katikaneni, S. N. Paglieri, A. Harale, B. Solami, S. M. Sarathy and J. Gascon, A technological roadmap to the ammonia energy economy: Current state and missing technologies, Chem. Eng. J., 408, 127310, 2021.
    [106] M. Aziz, A. T. Wijayanta and A. B. D. Nandiyanto, Ammonia as effective hydrogen storage: A review on production, storage and utilization, Energies, 13, 3062, 2020.
    [107] W. J. Sun, H. Q. Ji, L. X. Li, H. Y. Zhang, Z. K. Wang, J. H. He and J. M. Lu, Built‐in electric field triggered interfacial accumulation effect for efficient nitrate removal at ultra‐low concentration and electroreduction to ammonia, Angew. Chem., Int. Ed., 60, 22933-22939, 2021.
    [108] M. N. Almasri, Nitrate contamination of groundwater: a conceptual management framework, Environ. Impact Assess. Rev., 27, 220-242, 2007.
    [109] X. Lu, H. Song, J. Cai and S. Lu, Recent development of electrochemical nitrate reduction to ammonia: A mini review, Electrochem. Commun., 129, 107094, 2021.
    [110] C. Lv, J. Liu, C. Lee, Q. Zhu, J. Xu, H. Pan, C. Xue and Q. Yan, Emerging p-block-element-based electrocatalysts for sustainable nitrogen conversion, ACS Nano, 16, 15512-15527, 2022.
    [111] S. Chen, S. Perathoner, C. Ampelli, C. Mebrahtu, D. Su and G. Centi, Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon‐nanotube‐based electrocatalyst, Angew. Chem., Int. Ed., 56, 2699-2703, 2017.
    [112] N. Zhang, J. Shang, X. Deng, L. Cai, R. Long, Y. Xiong and Y. Chai, Governing interlayer strain in bismuth nanocrystals for efficient ammonia electrosynthesis from nitrate reduction, ACS Nano, 16, 4795-4804, 2022.
    [113] Y. Wang, W. Zhou, R. Jia, Y. Yu and B. Zhang, Unveiling the activity origin of a copper‐based electrocatalyst for selective nitrate reduction to ammonia, Angew. Chem., Int. Ed., 59, 5350-5354, 2020.
    [114] H. Yin, F. Dong, H. Su, Z. Zhuang, Y. Wang, D. Wang, Y. Peng and J. Li, Unraveling the activity trends and design principles of single-atom catalysts for nitrate electrocatalytic reduction, ACS Nano, 17, 25614-25624, 2023.
    [115] T. Hu, C. Wang, M. Wang, C. M. Li and C. Guo, Theoretical insights into superior nitrate reduction to ammonia performance of copper catalysts, ACS Catal., 11, 14417-14427, 2021.
    [116] Y. Fu, S. Wang, Y. Wang, P. Wei, J. Shao, T. Liu, G. Wang and X. Bao, Enhancing electrochemical nitrate reduction to ammonia over Cu nanosheets via facet tandem catalysis, Angew. Chem., Int. Ed., 62, e202303327, 2023.
    [117] S. B. Patil, T.-R. Liu, H.-L. Chou, Y.-B. Huang, C.-C. Chang, Y.-C. Chen, Y.-S. Lin, H. Li, Y.-C. Lee and Y. J. Chang, Electrocatalytic reduction of NO3– to ultrapure ammonia on {200} facet dominant Cu nanodendrites with high conversion faradaic efficiency, J. Phys. Chem. Lett., 12, 8121-8128, 2021.
    [118] V. Bon, I. Senkovska, I. A. Baburin and S. Kaskel, Zr-and Hf-based metal–organic frameworks: tracking down the polymorphism, Cryst. Growth Des., 13, 1231-1237, 2013.
    [119] S. Lin, Y. Pineda‐Galvan, W. A. Maza, C. C. Epley, J. Zhu, M. C. Kessinger, Y. Pushkar and A. J. Morris, Electrochemical water oxidation by a catalyst‐modified metal–organic framework thin film, ChemSusChem, 10, 514-522, 2017.
    [120] I. Liberman, R. Shimoni, R. Ifraemov, I. Rozenberg, C. Singh and I. Hod, Active-site modulation in an Fe-porphyrin-based metal–organic framework through ligand axial coordination: accelerating electrocatalysis and charge-transport kinetics, J. Am. Chem. Soc., 142, 1933-1940, 2020.
    [121] W. H. Ho, T.-Y. Chen, K.-i. Otake, Y.-C. Chen, Y.-S. Wang, J.-H. Li, H.-Y. Chen and C.-W. Kung, Polyoxometalate adsorbed in a metal–organic framework for electrocatalytic dopamine oxidation, Chem. Commun., 56, 11763-11766, 2020.
    [122] S. Dang, Q.-L. Zhu and Q. Xu, Nanomaterials derived from metal–organic frameworks, Nat. Rev. Mater., 3, 1-14, 2017.
    [123] P. M. Usov, C. Fabian and D. M. D'Alessandro, Rapid determination of the optical and redox properties of a metal–organic framework via in situ solid state spectroelectrochemistry, Chem. Commun., 48, 3945-3947, 2012.
    [124] P. M. Usov, S. R. Ahrenholtz, W. A. Maza, B. Stratakes, C. C. Epley, M. C. Kessinger, J. Zhu and A. J. Morris, Cooperative electrochemical water oxidation by Zr nodes and Ni–porphyrin linkers of a PCN-224 MOF thin film, J. Mater. Chem. A, 4, 16818-16823, 2016.
    [125] S. Goswami, I. Hod, J. D. Duan, C.-W. Kung, M. Rimoldi, C. D. Malliakas, R. H. Palmer, O. K. Farha and J. T. Hupp, Anisotropic redox conductivity within a metal–organic framework material, J. Am. Chem. Soc., 141, 17696-17702, 2019.
    [126] M. Cai, Q. Loague and A. J. Morris, Design rules for efficient charge transfer in metal–organic framework films: the pore size effect, J. Phys. Chem. Lett., 11, 702-709, 2020.
    [127] C.-H. Chuang, J.-H. Li, Y.-C. Chen, Y.-S. Wang and C.-W. Kung, Redox-hopping and electrochemical behaviors of metal–organic framework thin films fabricated by various approaches, J. Phys. Chem. C, 124, 20854-20863, 2020.
    [128] P. J. Celis-Salazar, M. Cai, C. A. Cucinell, S. R. Ahrenholtz, C. C. Epley, P. M. Usov and A. J. Morris, Independent quantification of electron and ion diffusion in metallocene-doped metal–organic frameworks thin films, J. Am. Chem. Soc., 141, 11947-11953, 2019.
    [129] H. Furukawa, F. Gándara, Y.-B. Zhang, J. Jiang, W. L. Queen, M. R. Hudson and O. M. Yaghi, Water adsorption in porous metal–organic frameworks and related materials, J. Am. Chem. Soc., 136, 4369-4381, 2014.
    [130] M. Lammert, H. Reinsch, C. Murray, M. Wharmby, H. Terraschke and N. Stock, Synthesis and structure of Zr(IV)-and Ce(IV)-based CAU-24 with 1,2,4,5-tetrakis(4-carboxyphenyl) benzene, Dalton Trans., 45, 18822-18826, 2016.
    [131] Y. S. Wang, Y. C. Chen, J. H. Li and C. W. Kung, Toward metal–organic‐framework‐based supercapacitors: room‐temperature synthesis of electrically conducting MOF‐based nanocomposites decorated with redox‐active manganese, Eur. J. Inorg., 2019, 3036-3044, 2019.
    [132] Y.-S. Wang, J.-L. Liao, Y.-S. Li, Y.-C. Chen, J.-H. Li, W. H. Ho, W.-H. Chiang and C.-W. Kung, Zirconium-based metal–organic framework nanocomposites containing dimensionally distinct nanocarbons for pseudocapacitors, ACS Appl. Nano Mater., 3, 1448-1456, 2020.
    [133] H. Noh, Y. Cui, A. W. Peters, D. R. Pahls, M. A. Ortuño, N. A. Vermeulen, C. J. Cramer, L. Gagliardi, J. T. Hupp and O. K. Farha, An exceptionally stable metal–organic framework supported molybdenum (VI) oxide catalyst for cyclohexene epoxidation, J. Am. Chem. Soc., 138, 14720-14726, 2016.
    [134] C.-H. Shen, Y.-H. Chen, Y.-C. Wang, T.-E. Chang, Y.-L. Chen and C.-W. Kung, Probing the electronic and ionic transport in topologically distinct redox-active metal–organic frameworks in aqueous electrolytes, Phys. Chem. Chem. Phys., 24, 9855-9865, 2022.
    [135] M. R. DeStefano, T. Islamoglu, S. J. Garibay, J. T. Hupp and O. K. Farha, Room-temperature synthesis of UiO-66 and thermal modulation of densities of defect sites, Chem. Mater., 29, 1357-1361, 2017.
    [136] D. Feng, Z. Y. Gu, J. R. Li, H. L. Jiang, Z. Wei and H. C. Zhou, Zirconium‐metalloporphyrin PCN‐222: mesoporous metal–organic frameworks with ultrahigh stability as biomimetic catalysts, Angew. Chem., Int. Ed., 51, 10307, 2012.
    [137] J. E. Mondloch, W. Bury, D. Fairen-Jimenez, S. Kwon, E. J. DeMarco, M. H. Weston, A. A. Sarjeant, S. T. Nguyen, P. C. Stair and R. Q. Snurr, Vapor-phase metalation by atomic layer deposition in a metal–organic framework, J. Am. Chem. Soc., 135, 10294-10297, 2013.
    [138] Z. Lu, J. Liu, X. Zhang, Y. Liao, R. Wang, K. Zhang, J. Lyu, O. K. Farha and J. T. Hupp, Node-accessible zirconium MOFs, J. Am. Chem. Soc., 142, 21110-21121, 2020.
    [139] B. Villoria‐del‐Álamo, S. Rojas‐Buzo, P. García‐García and A. Corma, Zr‐MOF‐808 as catalyst for amide esterification, Chem. Eur. J., 27, 4588-4598, 2021.
    [140] Y. Han, M. Liu, K. Li, Y. Zuo, Y. Wei, S. Xu, G. Zhang, C. Song, Z. Zhang and X. Guo, Facile synthesis of morphology and size-controlled zirconium metal–organic framework UiO-66: the role of hydrofluoric acid in crystallization, CrystEngComm, 17, 6434-6440, 2015.
    [141] G. Shearer, S. Chavan, J. Ethiraj, J. Vitillo and S. Svelle, Tuned to perfection: Ironing out the defects in UiO-66, Chem. Mater., 26, 4068-4071, 2014.
    [142] J. Liu, Z. Li, X. Zhang, K.-i. Otake, L. Zhang, A. W. Peters, M. J. Young, N. M. Bedford, S. P. Letourneau and D. J. Mandia, Introducing nonstructural ligands to zirconia-like metal–organic framework nodes to tune the activity of node-supported nickel catalysts for ethylene hydrogenation, ACS Catal., 9, 3198-3207, 2019.
    [143] W. Wei, X. Cui, W. Chen and D. G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes, Chem. Soc. Rev., 40, 1697-1721, 2011.
    [144] M. Toupin, T. Brousse and D. Bélanger, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor, Chem. Mater., 16, 3184-3190, 2004.
    [145] M. J. Young, A. M. Holder, S. M. George and C. B. Musgrave, Charge storage in cation incorporated α-MnO2, Chem. Mater., 27, 1172-1180, 2015.
    [146] X. Zhao, Y. Hou, Y. Wang, L. Yang, L. Zhu, R. Cao and Z. Sha, Prepared MnO2 with different crystal forms as electrode materials for supercapacitors: experimental research from hydrothermal crystallization process to electrochemical performances, RSC Adv., 7, 40286-40294, 2017.
    [147] M. Yan, E. M. Johnson and A. J. Morris, Redox hopping in metal–organic frameworks through the lens of the Scholz model, J. Phys. Chem. Lett., 14, 10700-10709, 2023.
    [148] E. Aunan, C. W. Affolter, U. Olsbye and K. P. Lillerud, Modulation of the thermochemical stability and adsorptive properties of MOF-808 by the selection of non-structural ligands, Chem. Mater., 33, 1471-1476, 2021.
    [149] C. Wang, Y. V. Kaneti, Y. Bando, J. Lin, C. Liu, J. Li and Y. Yamauchi, Metal–organic framework-derived one-dimensional porous or hollow carbon-based nanofibers for energy storage and conversion, Mater. Horiz., 5, 394-407, 2018.
    [150] Y. Pu, W. Wu, J. Liu, T. Liu, F. Ding, J. Zhang and Z. Tang, A defective MOF architecture threaded by interlaced carbon nanotubes for high-cycling lithium–sulfur batteries, RSC Adv., 8, 18604-18612, 2018.
    [151] M. Lammert, C. Glißmann, H. Reinsch and N. Stock, Synthesis and characterization of new Ce (IV)-MOFs exhibiting various framework topologies, Cryst. Growth Des., 17, 1125-1131, 2017.
    [152] M. Lammert, C. Glißmann and N. Stock, Tuning the stability of bimetallic Ce (IV)/Zr (IV)-based MOFs with UiO-66 and MOF-808 structures, Dalton Trans., 46, 2425-2429, 2017.
    [153] M. Lammert, M. T. Wharmby, S. Smolders, B. Bueken, A. Lieb, K. A. Lomachenko, D. De Vos and N. Stock, Cerium-based metal organic frameworks with UiO-66 architecture: synthesis, properties and redox catalytic activity, Chem. Commun., 51, 12578-12581, 2015.
    [154] J. Jacobsen, A. Ienco, R. D'Amato, F. Costantino and N. Stock, The chemistry of Ce-based metal–organic frameworks, Dalton Trans., 49, 16551-16586, 2020.
    [155] N. Padmanathan and S. Selladurai, Shape controlled synthesis of CeO2 nanostructures for high performance supercapacitor electrodes, RSC Adv., 4, 6527-6534, 2014.
    [156] N. Maheswari and G. Muralidharan, Hexagonal CeO2 nanostructures: an efficient electrode material for supercapacitors, Dalton Trans., 45, 14352-14362, 2016.
    [157] C.-H. Shen, C.-H. Chuang, Y.-J. Gu, W. H. Ho, Y.-D. Song, Y.-C. Chen, Y.-C. Wang and C.-W. Kung, Cerium-based metal–organic framework nanocrystals interconnected by carbon nanotubes for boosting electrochemical capacitor performance, ACS Appl. Mater. Interfaces, 13, 16418-16426, 2021.
    [158] R. Muruganantham, Y.-J. Gu, Y.-D. Song, C.-W. Kung and W.-R. Liu, Ce-MOF derived ceria: Insights into the Na-ion storage mechanism as a high-rate performance anode material, Appl. Mater. Today, 22, 100935, 2021.
    [159] S. A. Ntim, O. Sae-Khow, F. A. Witzmann and S. Mitra, Effects of polymer wrapping and covalent functionalization on the stability of MWCNT in aqueous dispersions, J. Colloid Interface Sci., 355, 383-388, 2011.
    [160] Z. J. Ingram, C. W. Lander, M. C. Oliver, N. G. k. e. Altınçekiç, L. Huang, Y. Shao and H. Noh, Hydrogen atom binding energy of structurally well-defined cerium oxide nodes at the metal–organic framework–liquid interfaces, J. Phys. Chem. C, 128, 9556-9565, 2024.
    [161] R. Shimoni, W. He, I. Liberman and I. Hod, Tuning of redox conductivity and electrocatalytic activity in metal–organic framework films via control of defect site density, J. Phys. Chem. C, 123, 5531-5539, 2019.
    [162] K. M. Choi, H. M. Jeong, J. H. Park, Y.-B. Zhang, J. K. Kang and O. M. Yaghi, Supercapacitors of nanocrystalline metal–organic frameworks, ACS Nano, 8, 7451-7457, 2014.
    [163] H. Wu, W. Zhang, S. Kandambeth, O. Shekhah, M. Eddaoudi and H. N. Alshareef, Conductive metal–organic frameworks selectively grown on laser‐scribed graphene for electrochemical microsupercapacitors, Adv. Energy Mater., 9, 1900482, 2019.
    [164] L. Wang, X. Feng, L. Ren, Q. Piao, J. Zhong, Y. Wang, H. Li, Y. Chen and B. Wang, Flexible solid-state supercapacitor based on a metal–organic framework interwoven by electrochemically-deposited PANI, J. Am. Chem. Soc., 137, 4920-4923, 2015.
    [165] X. Xu, J. Tang, H. Qian, S. Hou, Y. Bando, M. S. A. Hossain, L. Pan and Y. Yamauchi, Three-dimensional networked metal–organic frameworks with conductive polypyrrole tubes for flexible supercapacitors, ACS Appl. Mater. Interfaces, 9, 38737-38744, 2017.
    [166] J.-H. Li, Y.-C. Chen, Y.-S. Wang, W. H. Ho, Y.-J. Gu, C.-H. Chuang, Y.-D. Song and C.-W. Kung, Electrochemical evolution of pore-confined metallic molybdenum in a metal–organic framework (MOF) for all-MOF-based pseudocapacitors, ACS Appl. Energy Mater., 3, 6258-6267, 2020.
    [167] Y. D. Song, W. H. Ho, Y. C. Chen, J. H. Li, Y. S. Wang, Y. J. Gu, C. H. Chuang and C. W. Kung, Selective formation of polyaniline confined in the nanopores of a metal–organic framework for supercapacitors, Chem. Eur. J., 27, 3560-3567, 2021.
    [168] S. Matt and P. Gaskill, Where is dopamine and how do immune cells see it: dopamine-mediated immune cell function in health and disease, J. Neuroimmune Pharmacol., 15, 114-164, 2020.
    [169] R. M. Wightman, L. J. May and A. C. Michael, Detection of dopamine dynamics in the brain, Anal. Chem., 60, 769A-793A, 1988.
    [170] P. Greengard, The neurobiology of slow synaptic transmission, Science, 294, 1024-1030, 2001.
    [171] T. Kokulnathan, F. Ahmed, S.-M. Chen, T.-W. Chen, P. Hasan, A. L. Bilgrami and R. Darwesh, Rational confinement of yttrium vanadate within three-dimensional graphene aerogel: electrochemical analysis of monoamine neurotransmitter (dopamine), ACS Appl. Mater. Interfaces, 13, 10987-10995, 2021.
    [172] M. Ko, L. Mendecki, A. M. Eagleton, C. G. Durbin, R. M. Stolz, Z. Meng and K. A. Mirica, Employing conductive metal–organic frameworks for voltammetric detection of neurochemicals, J. Am. Chem. Soc., 142, 11717-11733, 2020.
    [173] T. Y. Huang, C. W. Kung, Y. T. Liao, S. Y. Kao, M. Cheng, T. H. Chang, J. Henzie, H. R. Alamri, Z. A. Alothman and Y. Yamauchi, Enhanced charge collection in MOF‐525–PEDOT nanotube composites enable highly sensitive biosensing, Adv. Sci., 4, 1700261, 2017.
    [174] R. Kanďár, P. Drábková and R. Hampl, The determination of ascorbic acid and uric acid in human seminal plasma using an HPLC with UV detection, J. Chromatogr. B, 879, 2834-2839, 2011.
    [175] Z.-H. Sheng, X.-Q. Zheng, J.-Y. Xu, W.-J. Bao, F.-B. Wang and X.-H. Xia, Electrochemical sensor based on nitrogen doped graphene: simultaneous determination of ascorbic acid, dopamine and uric acid, Biosens. Bioelectron., 34, 125-131, 2012.
    [176] M. Sajid, M. K. Nazal, M. Mansha, A. Alsharaa, S. M. S. Jillani and C. Basheer, Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid: A review, Trends Anal. Chem., 76, 15-29, 2016.
    [177] R.-L. Chai, X.-K. Zhang, Z. Zhao, T.-T. Li, G.-Y. Li, J. Zhao, G. Li, B. Cheng, Q. Zhao and S.-H. Li, Ionic covalent organosilicon polymer nanosheet for selective and sensitive detection of dopamine, ACS Mater. Lett., 5, 1376-1383, 2023.
    [178] H. Pan and C. J. Barile, Electrochemical CO2 reduction to methane with remarkably high Faradaic efficiency in the presence of a proton permeable membrane, Energy Environ. Sci., 13, 3567-3578, 2020.
    [179] M. Chang, W. Ren, W. Ni, S. Lee and X. Hu, Ionomers modify the selectivity of Cu‐catalyzed electrochemical CO2 reduction, ChemSusChem, 16, e202201687, 2023.
    [180] C. Kim, J. C. Bui, X. Luo, J. K. Cooper, A. Kusoglu, A. Z. Weber and A. T. Bell, Tailored catalyst microenvironments for CO2 electroreduction to multicarbon products on copper using bilayer ionomer coatings, Nat. Energy, 6, 1026-1034, 2021.
    [181] P. Mondol, D. Panthi, A. J. A. Ayala, S. O. Odoh and C. J. Barile, Membrane-modified electrocatalysts for nitrate reduction to ammonia with high faradaic efficiency, J. Mater. Chem. A, 10, 22428-22436, 2022.
    [182] J. Chou, T. J. Ilgen, S. Gordon, A. D. Ranasinghe, E. W. McFarland, H. Metiu and S. K. Buratto, Investigation of the enhanced signals from cations and dopamine in electrochemical sensors coated with Nafion, J. Electroanal. Chem., 632, 97-101, 2009.
    [183] T. Wang, D. Zhao, X. Guo, J. Correa, B. L. Riehl and W. R. Heineman, Carbon nanotube-loaded Nafion film electrochemical sensor for metal ions: europium, Anal. Chem., 86, 4354-4361, 2014.
    [184] Y. Sun, T. N. Nguyen, A. Anderson, X. Cheng, T. E. Gage, J. Lim, Z. Zhang, H. Zhou, F. Rodolakis and Z. Zhang, In vivo glutamate sensing inside the mouse brain with perovskite nickelate–Nafion heterostructures, ACS Appl. Mater. Interfaces, 12, 24564-24574, 2020.
    [185] P. Gayen and B. P. Chaplin, Selective electrochemical detection of ciprofloxacin with a porous Nafion/multiwalled carbon nanotube composite film electrode, ACS Appl. Mater. Interfaces, 8, 1615-1626, 2016.
    [186] W. Al-Graiti, Z. Yue, J. Foroughi, X.-F. Huang, G. Wallace, R. Baughman and J. Chen, Probe sensor using nanostructured multi-walled carbon nanotube yarn for selective and sensitive detection of dopamine, Sensors, 17, 884, 2017.
    [187] H. Li, K. Zhou, J. Cao, Q. Wei, C.-T. Lin, S. E. Pei, L. Ma, N. Hu, Y. Guo and Z. Deng, A novel modification to boron-doped diamond electrode for enhanced, selective detection of dopamine in human serum, Carbon, 171, 16-28, 2021.
    [188] Z. Nasri and E. Shams, Application of silica gel as an effective modifier for the voltammetric determination of dopamine in the presence of ascorbic acid and uric acid, Electrochim. Acta, 54, 7416-7421, 2009.
    [189] C.-H. Chen and S.-C. Luo, Tuning surface charge and morphology for the efficient detection of dopamine under the interferences of uric acid, ascorbic acid, and protein adsorption, ACS Appl. Mater. Interfaces, 7, 21931-21938, 2015.
    [190] G. Nagy, G. Gerhardt, A. Oke, M. Rice, R. Adams, M. Szentirmay and C. Martin, Ion exchange and transport of neurotransmitters in Nafion films on conventional and microelectrode surfaces, J. Electroanal. Chem. Interfacial Electrochem., 188, 85-94, 1985.
    [191] P. Deria, J. E. Mondloch, E. Tylianakis, P. Ghosh, W. Bury, R. Q. Snurr, J. T. Hupp and O. K. Farha, Perfluoroalkane functionalization of NU-1000 via solvent-assisted ligand incorporation: synthesis and CO2 adsorption studies, J. Am. Chem. Soc., 135, 16801-16804, 2013.
    [192] Y.-J. Gu, Y.-A. Lo, A.-C. Li, Y.-C. Chen, J.-H. Li, Y.-S. Wang, H.-K. Tian, W. Kaveevivitchai and C.-W. Kung, A single potassium-ion conducting metal–organic framework, ACS Appl. Energy Mater., 5, 8573-8580, 2022.
    [193] D. Butler, D. Moore, N. R. Glavin, J. A. Robinson and A. Ebrahimi, Facile post-deposition annealing of graphene ink enables ultrasensitive electrochemical detection of dopamine, ACS Appl. Mater. Interfaces, 13, 11185-11194, 2021.
    [194] F. Gao, X. Cai, X. Wang, C. Gao, S. Liu, F. Gao and Q. Wang, Highly sensitive and selective detection of dopamine in the presence of ascorbic acid at graphene oxide modified electrode, Sens. Actuators B: Chem., 186, 380-387, 2013.
    [195] Y.-S. Tsai, S.-C. Yang, T.-H. Yang, C.-H. Wu, T.-C. Lin and C.-W. Kung, Sulfonate-functionalized metal–organic framework as a porous “proton reservoir” for boosting electrochemical reduction of nitrate to ammonia, ACS Appl. Mater. Interfaces, 16, 62185-62194, 2024.
    [196] Y.-L. Chen, Y.-C. Wang, Y.-H. Chen, T.-E. Chang, C.-H. Shen, C.-W. Huang and C.-W. Kung, Pore-confined cobalt sulphide nanoparticles in a metal–organic framework as a catalyst for the colorimetric detection of hydrogen peroxide, Mater. Adv., 3, 6364-6372, 2022.
    [197] K. I. Hadjiivanov, D. A. Panayotov, M. Y. Mihaylov, E. Z. Ivanova, K. K. Chakarova, S. M. Andonova and N. L. Drenchev, Power of infrared and Raman spectroscopies to characterize metal-organic frameworks and investigate their interaction with guest molecules, Chem. Rev., 121, 1286-1424, 2020.
    [198] Y.-Y. Zheng, C.-X. Li, X.-T. Ding, Q. Yang, Y.-M. Qi, H.-M. Zhang and L.-T. Qu, Detection of dopamine at graphene-ZIF-8 nanocomposite modified electrode, Chin. Chem. Lett., 28, 1473-1478, 2017.
    [199] X. Ke, Z. Zhao, J. Huang, C. Liu, G. Huang, J. Tan, H. Zhu, Z. Xiao, X. Liu and Y. Mei, Growth control of metal–organic framework films on marine biological carbon and their potential-dependent dopamine sensing, ACS Appl. Mater. Interfaces, 15, 12005-12016, 2023.
    [200] J. Tang, Y. Liu, J. Hu, S. Zheng, X. Wang, H. Zhou and B. Jin, Co-based metal-organic framework nanopinnas composite doped with Ag nanoparticles: A sensitive electrochemical sensing platform for simultaneous determination of dopamine and acetaminophen, Microchem. J., 155, 104759, 2020.
    [201] Y. Shu, Q. Lu, F. Yuan, Q. Tao, D. Jin, H. Yao, Q. Xu and X. Hu, Stretchable electrochemical biosensing platform based on Ni-MOF composite/Au nanoparticle-coated carbon nanotubes for real-time monitoring of dopamine released from living cells, ACS Appl. Mater. Interfaces, 12, 49480-49488, 2020.
    [202] Y.-T. Chiang, Y.-J. Gu, Y.-D. Song, Y.-C. Wang and C.-W. Kung, Cerium-based metal–organic framework as an electrocatalyst for the reductive detection of dopamine, Electrochem. Commun., 135, 107206, 2022.
    [203] S. Lu, M. Hummel, K. Chen, Y. Zhou, S. Kang and Z. Gu, Synthesis of Au@ZIF-8 nanocomposites for enhanced electrochemical detection of dopamine, Electrochem. Commun., 114, 106715, 2020.
    [204] Y.-R. Kim, S. Bong, Y.-J. Kang, Y. Yang, R. K. Mahajan, J. S. Kim and H. Kim, Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes, Biosens. Bioelectron., 25, 2366-2369, 2010.
    [205] Q. Yang, Q. Xu and H.-L. Jiang, Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis, Chem. Soc. Rev., 46, 4774-4808, 2017.
    [206] P. K. Rastogi, V. Ganesan and S. Krishnamoorthi, A promising electrochemical sensing platform based on a silver nanoparticles decorated copolymer for sensitive nitrite determination, J. Mater. Chem. A, 2, 933-943, 2014.
    [207] S. Furukawa, J. Reboul, S. Diring, K. Sumida and S. Kitagawa, Structuring of metal–organic frameworks at the mesoscopic/macroscopic scale, Chem. Soc. Rev., 43, 5700-5734, 2014.
    [208] Y. Luo, M. Ahmad, A. Schug and M. Tsotsalas, Rising up: hierarchical metal–organic frameworks in experiments and simulations, Adv. Mater., 31, 1901744, 2019.
    [209] L. Feng, K.-Y. Wang, J. Willman and H.-C. Zhou, Hierarchy in metal–organic frameworks, ACS Cent. Sci., 6, 359-367, 2020.
    [210] Z. Fang, J. P. Dürholt, M. Kauer, W. Zhang, C. Lochenie, B. Jee, B. Albada, N. Metzler-Nolte, A. Pöppl and B. Weber, Structural complexity in metal–organic frameworks: Simultaneous modification of open metal sites and hierarchical porosity by systematic doping with defective linkers, J. Am. Chem. Soc., 136, 9627-9636, 2014.
    [211] X. Li, X. T. Wu, Q. Xu and Q. L. Zhu, Hierarchically ordered pore engineering of metal–organic framework‐based materials for electrocatalysis, Adv. Mater., 2401926, 2024.
    [212] K. Li, J. Yang, R. Huang, S. Lin and J. Gu, Ordered large‐pore mesoMOFs based on synergistic effects of triblock polymer and hofmeister ion, Angew. Chem., Int. Ed., 132, 14228-14232, 2020.
    [213] Y. Zhao, L. Zhu, J. Tang, L. Fu, D. Jiang, X. Wei, H. Nara, T. Asahi and Y. Yamauchi, Enhancing electrocatalytic performance via thickness-tuned hollow N-doped mesoporous carbon with embedded Co nanoparticles for oxygen reduction reaction, ACS Nano, 18, 373-382, 2023.
    [214] K. Li, J. Yang and J. Gu, Hierarchically porous MOFs synthesized by soft-template strategies, Acc. Chem. Res., 55, 2235-2247, 2022.
    [215] K. Li, S. Lin, Y. Li, Q. Zhuang and J. Gu, Aqueous‐phase synthesis of mesoporous Zr‐based MOFs templated by amphoteric surfactants, Angew. Chem., Int. Ed., 130, 3497-3501, 2018.
    [216] Y. Zhao, L. Zhu, Y. Kang, C.-H. Shen, X. Liu, D. Jiang, L. Fu, O. Guselnikova, L. Huang and X. Song, Nanoengineering multilength scale porous hierarchy in mesoporous metal–organic framework single crystals, ACS Nano, 18, 22404–22414, 2024.
    [217] H. V. Doan, H. Amer Hamzah, P. Karikkethu Prabhakaran, C. Petrillo and V. P. Ting, Hierarchical metal–organic frameworks with macroporosity: synthesis, achievements, and challenges, Nano-Micro Lett., 11, 54, 2019.
    [218] H. Huang, J.-R. Li, K. Wang, T. Han, M. Tong, L. Li, Y. Xie, Q. Yang, D. Liu and C. Zhong, An in situ self-assembly template strategy for the preparation of hierarchical-pore metal-organic frameworks, Nat. Commun., 6, 8847, 2015.
    [219] F. Sandra, M. Depardieu, Z. Mouline, G. L. Vignoles, Y. Iwamoto, P. Miele, R. Backov and S. Bernard, Polymer‐derived silicoboron carbonitride foams for CO2 capture: From design to application as scaffolds for the in situ growth of metal–organic frameworks, Chem. Eur. J., 22, 8346-8357, 2016.
    [220] H. Kim, M. Oh, D. Kim, J. Park, J. Seong, S. K. Kwak and M. S. Lah, Single crystalline hollow metal–organic frameworks: a metal–organic polyhedron single crystal as a sacrificial template, Chem. Commun., 51, 3678-3681, 2015.
    [221] J. Yang, K. Li and J. Gu, Hierarchically macro-microporous Ce-based MOFs for the cleavage of DNA, ACS Mater. Lett., 4, 385-391, 2022.
    [222] Q. Hong, B. Miao, T. Wang, F. Li and Y. Chen, Intermetallic PtTe metallene for formic acid oxidation assisted electrocatalytic nitrate reduction, Energy Lab, 1, 220022, 2023.
    [223] H. Zhou, B. Xiong, L. Chen and J. Shi, Modulation strategies of Cu-based electrocatalysts for efficient nitrogen reduction, J. Mater. Chem. A, 8, 20286-20293, 2020.
    [224] C. Li, S. Liu, Y. Xu, T. Ren, Y. Guo, Z. Wang, X. Li, L. Wang and H. Wang, Controllable reconstruction of copper nanowires into nanotubes for efficient electrocatalytic nitrate conversion into ammonia, Nanoscale, 14, 12332-12338, 2022.
    [225] M. P. Singh, N. R. Dhumal, H. J. Kim, J. Kiefer and J. A. Anderson, Influence of water on the chemistry and structure of the metal–organic framework Cu3(btc)2, J. Phys. Chem. C, 120, 17323-17333, 2016.
    [226] J. B. DeCoste, G. W. Peterson, B. J. Schindler, K. L. Killops, M. A. Browe and J. J. Mahle, The effect of water adsorption on the structure of the carboxylate containing metal–organic frameworks Cu-BTC, Mg-MOF-74, and UiO-66, J. Mater. Chem. A, 1, 11922-11932, 2013.
    [227] S. Rojas-Buzo, D. Salusso, T.-H. T. Le, M. A. Ortuño, K. A. Lomachenko and S. Bordiga, Unveiling the role and stabilization mechanism of Cu+ into defective Ce-MOF clusters during CO oxidation, J. Phys. Chem. Lett., 15, 3962-3967, 2024.
    [228] X. He, B. G. Looker, K. T. Dinh, A. W. Stubbs, T. Chen, R. J. Meyer, P. Serna, Y. Román-Leshkov, K. M. Lancaster and M. Dincă, Cerium(IV) enhances the catalytic oxidation activity of single-site Cu active sites in MOFs, ACS Catal., 10, 7820-7825, 2020.
    [229] S.-C. Yang, B. Muthiah, J.-W. Chang, M.-D. Tsai, Y.-C. Wang, Y.-P. Li and C.-W. Kung, Support effect in metal–organic framework-derived copper-based electrocatalysts facilitating the reduction of nitrate to ammonia, Electrochim. Acta, 492, 144348, 2024.
    [230] Y.-T. Xu, M.-Y. Xie, H. Zhong and Y. Cao, In situ clustering of single-atom copper precatalysts in a metal–organic framework for efficient electrocatalytic nitrate-to-ammonia reduction, ACS Catal., 12, 8698-8706, 2022.
    [231] J. Yang, K. Li, C. Li and J. Gu, In situ coupling of catalytic centers into artificial substrate mesochannels as super‐active metalloenzyme mimics, Small, 17, 2101455, 2021.
    [232] R. Gao, N. Ye, X. Kou, Y. Shen, H. Yang, T. Wu, S. Huang, G. Chen and G. Ouyang, Hierarchically mesoporous Ce-based MOFs with enhanced alkaline phosphatase-like activity for phosphorylated biomarker sensing, Chem. Commun., 58, 12720-12723, 2022.
    [233] J. Amesimeku, Y. Zhao, K. Li and J. Gu, Rapid synthesis of hierarchical cerium-based metal organic frameworks for carbon dioxide adsorption and selectivity, Microporous Mesoporous Mater., 359, 112658, 2023.
    [234] C.-H. Shen, Y. Zhao, H. N. Nam, L. Zhu, Q. M. Phung, V. Austen, M. Kim, D. Jiang, X. Wei and T. Yokoshima, Unlocking coordination sites of metal–organic frameworks for high-density and accessible copper nanoparticles toward electrochemical nitrate reduction to ammonia, Chem. Sci., 16, 7026-7038, 2025.
    [235] C. Jia, Y. Zhao, S. Song, Q. Sun, Q. Meyer, S. Liu, Y. Shen and C. Zhao, Highly ordered hierarchical porous single‐atom Fe catalyst with promoted mass transfer for efficient electroreduction of CO2, Adv. Energy Mater., 13, 2302007, 2023.
    [236] D. Zhu, L. Zhang, R. E. Ruther and R. J. Hamers, Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction, Nat. Mater., 12, 836-841, 2013.
    [237] V. Bernales, M. A. Ortuño, D. G. Truhlar, C. J. Cramer and L. Gagliardi, Computational design of functionalized metal–organic framework nodes for catalysis, ACS Cent. Sci., 4, 5-19, 2018.
    [238] J. P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 1996.
    [239] S. Grimme, S. Ehrlich and L. Goerigk, Effect of the damping function in dispersion corrected density functional theory, J. Comput. Chem., 32, 1456-1465, 2011.
    [240] G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci., 6, 15-50, 1996.
    [241] G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B, 47, 558, 1993.
    [242] G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59, 1758, 1999.
    [243] P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B, 50, 17953, 1994.
    [244] Y. Zhu, J. Zheng, J. Ye, Y. Cui, K. Koh, L. Kovarik, D. M. Camaioni, J. L. Fulton, D. G. Truhlar and M. Neurock, Copper-zirconia interfaces in UiO-66 enable selective catalytic hydrogenation of CO2 to methanol, Nat. Commun., 11, 5849, 2020.
    [245] M. A. Ortuño, V. Bernales, L. Gagliardi and C. J. Cramer, Computational study of first-row transition metals supported on MOF NU-1000 for catalytic acceptorless alcohol dehydrogenation, J. Phys. Chem. C, 120, 24697-24705, 2016.
    [246] M. Dolg, U. Wedig, H. Stoll and H. Preuss, Energy‐adjusted ab initio pseudopotentials for the first row transition elements, J. Chem. Phys., 86, 866-872, 1987.
    [247] M. Dolg, H. Stoll and H. Preuss, Energy‐adjusted ab initio pseudopotentials for the rare earth elements, J. Chem. Phys., 90, 1730-1734, 1989.
    [248] S. Grimme, Supramolecular binding thermodynamics by dispersion‐corrected density functional theory, Chem. Eur. J., 18, 9955-9964, 2012.
    [249] A. D. Becke, Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction, J. Chem. Phys., 96, 2155-2160, 1992.
    [250] C. Lee, W. Yang and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B, 37, 785, 1988.
    [251] S. H. Vosko, L. Wilk and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Can. J. Phys., 58, 1200-1211, 1980.
    [252] F. Weigend and R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, Phys. Chem. Chem. Phys., 7, 3297-3305, 2005.
    [253] A. V. Marenich, C. J. Cramer and D. G. Truhlar, Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions, J. Phys. Chem. B, 113, 6378-6396, 2009.
    [254] S. G. Balasubramani, G. P. Chen, S. Coriani, M. Diedenhofen, M. S. Frank, Y. J. Franzke, F. Furche, R. Grotjahn, M. E. Harding and C. Hättig, TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations, J. Chem. Phys., 152, 2020.
    [255] T. A. Manz and N. G. Limas, Introducing DDEC6 atomic population analysis: part 1. Charge partitioning theory and methodology, RSC Adv., 6, 47771-47801, 2016.
    [256] C. Liu, Y.-Z. Shi, Q. Chen, B.-H. Ye, J.-H. Bi, J. C. Yu and L. Wu, The defect-modulated UiO-66(Ce) MOFs for enhancing photocatalytic selective organic oxidations, Rare Met., 1-12, 2024.
    [257] Y. Kang, B. Jiang, J. Yang, Z. Wan, J. Na, Q. Li, H. Li, J. Henzie, Y. Sakka and Y. Yamauchi, Amorphous alloy architectures in pore walls: mesoporous amorphous NiCoB alloy spheres with controlled compositions via a chemical reduction, ACS Nano, 14, 17224-17232, 2020.
    [258] S. Ling and B. Slater, Dynamic acidity in defective UiO-66, Chem. Sci., 7, 4706-4712, 2016.
    [259] Y.-P. Chuang, C.-H. Shen, H.-J. Hsu, Y.-Z. Su, S.-C. Yang, S.-S. Yu and C.-W. Kung, Cerium(IV)-based metal–organic framework nanostructures grown on 3D-printed free-standing membranes and their derivatives for charge storage, ACS Appl. Nano Mater., 6, 19701-19709, 2023.
    [260] J. Zeng, J. Su, N. Sun, L. Han, M. Yuan, H. Deng, Y. Zhuang, J. Wang and Y. Zhang, A hierarchical cerium metal organic framework-graphene oxide heterostructure composite for rapid and efficient scavenging of fluoride, Sep. Purif. Technol., 345, 127327, 2024.
    [261] R. Dalapati, B. Sakthivel, M. K. Ghosalya, A. Dhakshinamoorthy and S. Biswas, A cerium-based metal–organic framework having inherent oxidase-like activity applicable for colorimetric sensing of biothiols and aerobic oxidation of thiols, CrystEngComm, 19, 5915-5925, 2017.
    [262] R. D’Amato, A. Donnadio, M. Carta, C. Sangregorio, D. Tiana, R. Vivani, M. Taddei and F. Costantino, Water-based synthesis and enhanced CO2 capture performance of perfluorinated cerium-based metal–organic frameworks with UiO-66 and MIL-140 topology, ACS Sustainable Chem. Eng., 7, 394-402, 2018.
    [263] P. Ji, T. Sawano, Z. Lin, A. Urban, D. Boures and W. Lin, Cerium-hydride secondary building units in a porous metal–organic framework for catalytic hydroboration and hydrophosphination, J. Am. Chem. Soc., 138, 14860-14863, 2016.
    [264] R. Daiyan, T. Tran-Phu, P. Kumar, K. Iputera, Z. Tong, J. Leverett, M. H. A. Khan, A. A. Esmailpour, A. Jalili and M. Lim, Nitrate reduction to ammonium: from CuO defect engineering to waste NOx-to-NH3 economic feasibility, Energy Environ. Sci., 14, 3588-3598, 2021.
    [265] O. Akhavan, R. Azimirad, S. Safa and E. Hasani, CuO/Cu(OH)2 hierarchical nanostructures as bactericidal photocatalysts, J. Mater. Chem., 21, 9634-9640, 2011.
    [266] F. Du, G.-H. Cui, B.-L. Yang, D.-S. Zhang, R.-F. Song and Z.-X. Li, Ingenious design of one mixed-valence dual-net copper metal-organic framework for deriving Cu2O/CuO heterojunction with highly electrocatalytic performances from NO3− to NH3, J. Power Sources, 543, 231832, 2022.
    [267] A. S. Duke, E. A. Dolgopolova, R. P. Galhenage, S. C. Ammal, A. Heyden, M. D. Smith, D. A. Chen and N. B. Shustova, Active sites in copper-based metal–organic frameworks: understanding substrate dynamics, redox processes, and valence-band structure, J. Phys. Chem. C, 119, 27457-27466, 2015.
    [268] I. Berg, E. Amit, L. Hale, F. D. Toste and E. Gross, N‐heterocyclic carbene based nanolayer for copper film oxidation mitigation, Angew. Chem., Int. Ed., 134, e202201093, 2022.
    [269] J. Cai, J. Huang, A. Cao, Y. Wei, H. Wang, X. Li, Z. Jiang, G. I. Waterhouse, S. Lu and S.-Q. Zang, Interfacial hydrogen bonding-involved electrocatalytic ammonia synthesis on OH-terminated MXene, Appl. Catal. B Environ., 328, 122473, 2023.
    [270] X.-X. Fu, H. Guo, D.-H. Si, H.-J. Zhu, Y.-Y. Lan, Y.-B. Huang and R. Cao, Hydrogen-bond mediated electrocatalytic nitrate reduction to ammonia over metal–organic frameworks with industrial current density, Chem. Sci., 16, 13503-13513, 2025.
    [271] Y. Kim, J. Ko, M. Shim, J. Park, H.-H. Shin, Z. H. Kim, Y. Jung and H. R. Byon, Identifying the active sites and intermediates on copper surfaces for electrochemical nitrate reduction to ammonia, Chem. Sci., 15, 2578-2585, 2024.
    [272] S. Trasatti and O. Petrii, Real surface area measurements in electrochemistry, Pure Appl. Chem., 63, 711-734, 1991.
    [273] H. Du, H. Guo, K. Wang, X. Du, B. A. Beshiwork, S. Sun, Y. Luo, Q. Liu, T. Li and X. Sun, Durable electrocatalytic reduction of nitrate to ammonia over defective pseudobrookite Fe2TiO5 nanofibers with abundant oxygen vacancies, Angew. Chem., Int. Ed., 135, e202215782, 2023.
    [274] P. Hu, S. Hu, H. Du, Q. Liu, H. Guo, K. Ma and T. Li, Efficient electrocatalytic reduction of nitrate to ammonia over fibrous SmCoO3 under ambient conditions, Chem. Commun., 59, 5697-5700, 2023.
    [275] R. Zhang, Y. Zhang, B. Xiao, S. Zhang, Y. Wang, H. Cui, C. Li, Y. Hou, Y. Guo and T. Yang, Phase engineering of high‐entropy alloy for enhanced electrocatalytic nitrate reduction to ammonia, Angew. Chem., Int. Ed., e202407589, 2024.
    [276] Z. Gong, W. Zhong, Z. He, Q. Liu, H. Chen, D. Zhou, N. Zhang, X. Kang and Y. Chen, Regulating surface oxygen species on copper (I) oxides via plasma treatment for effective reduction of nitrate to ammonia, Appl. Catal. B: Environ., 305, 121021, 2022.
    [277] T. Ren, K. Ren, M. Wang, M. Liu, Z. Wang, H. Wang, X. Li, L. Wang and Y. Xu, Concave-convex surface oxide layers over copper nanowires boost electrochemical nitrate-to-ammonia conversion, Chem. Eng. J., 426, 130759, 2021.
    [278] G.-F. Chen, Y. Yuan, H. Jiang, S.-Y. Ren, L.-X. Ding, L. Ma, T. Wu, J. Lu and H. Wang, Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst, Nat. Energy, 5, 605-613, 2020.
    [279] Y. Xu, M. Wang, K. Ren, T. Ren, M. Liu, Z. Wang, X. Li, L. Wang and H. Wang, Atomic defects in pothole-rich two-dimensional copper nanoplates triggering enhanced electrocatalytic selective nitrate-to-ammonia transformation, J. Mater. Chem. A, 9, 16411-16417, 2021.
    [280] J. Yang, H. Qi, A. Li, X. Liu, X. Yang, S. Zhang, Q. Zhao, Q. Jiang, Y. Su and L. Zhang, Potential-driven restructuring of Cu single atoms to nanoparticles for boosting the electrochemical reduction of nitrate to ammonia, J. Am. Chem. Soc., 144, 12062-12071, 2022.
    [281] M. Jiang, Q. Zhu, X. Song, Y. Gu, P. Zhang, C. Li, J. Cui, J. Ma, Z. Tie and Z. Jin, Batch-scale synthesis of nanoparticle-agminated three-dimensional porous Cu@Cu2O microspheres for highly selective electrocatalysis of nitrate to ammonia, Environ. Sci. Technol., 56, 10299-10307, 2022.
    [282] P. Li, R. Li, Y. Liu, M. Xie, Z. Jin and G. Yu, Pulsed nitrate-to-ammonia electroreduction facilitated by tandem catalysis of nitrite intermediates, J. Am. Chem. Soc., 145, 6471-6479, 2023.
    [283] Z. Song, Y. Liu, Y. Zhong, Q. Guo, J. Zeng and Z. Geng, Efficient electroreduction of nitrate into ammonia at ultralow concentrations via an enrichment effect, Adv. Mater., 34, 2204306, 2022.
    [284] X. Zhu, H. Huang, H. Zhang, Y. Zhang, P. Shi, K. Qu, S.-B. Cheng, A.-L. Wang and Q. Lu, Filling mesopores of conductive metal–organic frameworks with Cu clusters for selective nitrate reduction to ammonia, ACS Appl. Mater. Interfaces, 14, 32176-32182, 2022.
    [285] K. Li, Y. Zhao, J. Yang and J. Gu, Nanoemulsion-directed growth of MOFs with versatile architectures for the heterogeneous regeneration of coenzymes, Nat. Commun., 13, 1879, 2022.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE