| 研究生: |
蘇舶尼 Subramani, Udaya Kumar |
|---|---|
| 論文名稱: |
液體輔助二氧化碳雷射加工高分子表面結構及其在摩擦生電的增強效應 Fabrication of polymer surface microstructure using liquid-assisted CO2 Laser Ablation for the enhancement of Triboelectric effect |
| 指導教授: |
鍾震桂
Chung, Chen-Kuei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 92 |
| 外文關鍵詞: | Liquid-Assisted Laser Processing, Debris, Distribution, Enhancement, Triboelectric effect |
| 相關次數: | 點閱:53 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Global energy usage and production are inefficient. Triboelectric nanogenerator (TENG) is a promising technique to efficiently reuse the energy. Herein, we discuss cost efficient and feasible fabrication process for the enhancement of triboelectric effect in materials. The CO2 laser of 10.16 µm wavelength is one of the cost-effective, rapid and reliable polymer material processing methods. This photo-thermal process for material subtraction causes some defects like debris, cracks, and bulges near the laser-ablated area. We propose a novel concept in advanced laser processing for the fabrication of microstructure. Liquid-assisted laser processing (LALP) considered an idle method for the fabrication of polymer-based microstructure, reduces the defects relatively to the air assisted laser processing and benefits in a result of obtaining organised debris and size controlled bulges.
The manipulation of the Laser Parameters, the Power, the Scanning speed, Points per inch, and nozzle air flow pressure over the different laser ablation techniques, liquid and Air, the organisation of Distribution of particles to sub-micrometre size possible. For the controlled parameters of laser ablation at a Power of 1.5 W, scanning speed of 57 mm/s, PPI of 1000 and nozzle air flow pressure of 1.42 psi the particles are found to be maximum. The Observed voltage and current in the TENG performance confirm the effect.
[1]. Yuan, D. and Das, S., 2007. “Experimental and theoretical analysis of direct-write laser micromachining of polymethyl methacrylate by CO2 laser ablation”. Journal of applied physics, 101(2), p.024901.
[2]. Kaldos, A., Pieper, H.J., Wolf, E. and Krause, M., 2004. “Laser machining in die making—a modern rapid tooling process”. Journal of Materials Processing Technology, 155, pp.1815-1820.
[3]. Cheng, J.Y., Yen, M.H., Wei, C.W., Chuang, Y.C. and Young, T.H., 2005. “Crack-free direct-writing on glass using a low-power UV laser in the manufacture of a microfluidic chip”. Journal of Micromechanics and Microengineering, 15(6), p.1147.
[4]. Chung, C.K., Lin, Y.C. and Huang, G.R., 2005. “Bulge formation and improvement of the polymer in CO2 laser micromachining”. Journal of Micromechanics and Microengineering, 15(10), p.1878.
[5]. Allcock, G., Dyer, P.E., Elliner, G. and Snelling, H.V., 1995. “Experimental observations and analysis of CO2 laser‐induced micro cracking of glass”. Journal of applied physics, 78(12), pp.7295-7303.
[6]. Chung, C.K., Sung, Y.C., Huang, G.R., Hsiao, E.J., Lin, W.H. and Lin, S.L., 2009. “Crackless linear through-wafer etching of Pyrex glass using liquid-assisted CO2 laser processing”. Applied Physics A, 94(4), pp.927-932.
[7]. Barnes, C., Shrotriya, P. and Molian, P., 2007. “Water-assisted laser thermal shock machining of alumina”. International Journal of Machine Tools and Manufacture, 47(12), pp.1864-1874.
[8]. Chung, C.K., Chang, H.C., Shih, T.R., Lin, S.L., Hsiao, E.J., Chen, Y.S., Chang, E.C., Chen, C.C. and Lin, C.C., 2010. “Water-assisted CO2 laser ablated glass and modified thermal bonding for capillary-driven bio-fluidic application”. Biomedical microdevices, 12(1), pp.107-114.
[9]. Kruusing, A., 2004. “Underwater and water-assisted laser processing: part 1—general features, steam cleaning and shock processing”. Optics and Lasers in Engineering, 41(2), pp.307-327.
[10]. Kruusing, A., 2004. “Underwater and water-assisted laser processing: Part 2—Etching, cutting and rarely used methods”. Optics and Lasers in Engineering, 41(2), pp.329-352.
[11]. Liu, H., Chen, F., Wang, X., Yang, Q., Bian, H., Si, J. and Hou, X., 2010. “Influence of liquid environments on femtosecond laser ablation of silicon”. Thin Solid Films, 518(18), pp.5188-5194.
[12]. Patra, N., Akash, K., Shiva, S., Gagrani, R., Rao, H.S.P., Anirudh, V.R., Palani, I.A. and Singh, V., 2016. “Parametric investigations on the influence of nano-second Nd 3+: YAG laser wavelength and fluence in synthesizing NiTi nano-particles using liquid assisted laser ablation technique”. Applied Surface Science, 366, pp.104-111.
[13]. Ulmeanu, M., Grubb, M.P., Jipa, F., Quignon, B. and Ashfold, M.N.R., 2015. “3-D patterning of silicon by laser-initiated, liquid-assisted colloidal (LILAC) lithography. Journal of colloid and interface science”, 447, pp.258-262.
[14]. Tangwarodomnukun, V. and Chen, H.Y., 2015. “Laser ablation of PMMA in air, water, and ethanol environments”. Materials and Manufacturing Processes,30(5), pp.685-691.
[15]. Fan, F. R., L. Lin, et al. 2012. "Transparent Triboelectric Nanogenerators and Self-Powered Pressure Sensors Based on Micropatterned Plastic Films." Nano Letters 12(6): 3109-3114
[16]. Fan, F. R., Z. Q. Tian, et al. 2012. "Flexible triboelectric generator." Nano Energy 1(2): 328-334.
[17]. Wang S H, Lin L and Wang Z L 2012 “Nanoscale Triboelectric-Effect-Enabled Energy Conversion for Sustainably Powering Portable Electronics” Nano Letters,12, 6339-46
[18]. Yang Y, Lin L, Zhang Y, Jing Q S, Hou T C and Wang Z L 2012 “Self-Powered Magnetic Sensor Based on a Triboelectric Nanogenerator” Acs Nano 6 10378-83
[19]. Tian H, Ma S, Zhao H M, Wu C, Ge J, Xie D, Yang Y and Ren T L 2013 “Flexible electrostatic nanogenerator using graphene oxide film”. Nanoscale 5 8951-7
[20]. Zhang H, Yang Y, Hou T-C, Su Y, Hu C and Wang Z L 2013 “Triboelectric nanogenerator built inside clothes for self-powered glucose biosensors”. Nano Energy 2 1019-24
[21]. Zhang H, Yang Y, Su Y, Chen J, Hu C, Wu Z, Liu Y, Wong C P, Bando Y and Wang Z L 2013 “Triboelectric nanogenerator as self-powered active sensors for detecting liquid/gaseous water/ethanol”. Nano Energy 2 693-701
[22]. Zhong J, Zhong Q, Fan F, Zhang Y, Wang S, Hu B, Wang Z L and Zhou J 2013. “Finger typing driven triboelectric nanogenerator and its use for instantaneously lighting up LEDs”. Nano Energy 2 491-7
[23]. Zhu G, Bai P, Chen J and Wang Z L 2013 “Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics” Nano Energy 2 688-92
[24]. Du W, Han X, Lin L, Chen M, Li X, Pan C and Wang Z L 2014 “A Three Dimensional Multi-Layered Sliding Triboelectric Nanogenerator”. Advanced Energy Materials 4
[25]. Guo H, Chen J, Tian L, Leng Q, Xi Y and Hu C 2014 “Airflow-Induced Triboelectric Nanogenerator as a Self-Powered Sensor for Detecting Humidity and Airflow Rate”. Acs Applied Materials & Interfaces 6 17184-9
[26]. Niu S, Zhou Y S, Wang S, Liu Y, Lin L, Bando Y and Wang Z L 2014 “Simulation method for optimizing the performance of an integrated triboelectric nanogenerator energy harvesting system”. Nano Energy 8 150-6
[27]. Taghavi M, Mattoli V, Sadeghi A, Mazzolai B and Beccai L 2014 “A Novel Soft Metal-Polymer Composite for Multidirectional Pressure Energy Harvesting” Advanced Energy Materials 4
[28]. Xie Y, Wang S, Niu S, Lin L, Jing Q, Su Y, Wu Z and Wang Z L 2014 “Multi-layered disk triboelectric nanogenerator for harvesting hydropower” Nano Energy 6 129-36
[29]. Xie Y N, Wang S H, Niu S M, Lin L, Jing Q S, Yang J, Wu Z Y and Wang Z L 2014 “Grating-Structured Freestanding Triboelectric-Layer Nanogenerator for Harvesting Mechanical Energy at 85% Total Conversion Efficiency” Advanced Materials 26 6599-607
[30]. Yang W, Chen J, Jing Q, Yang J, Wen X, Su Y, Zhu G, Bai P and Wang Z L 2014 “3D Stack Integrated Triboelectric Nanogenerator for Harvesting Vibration Energy” Advanced Functional Materials 24 4090-6
[31]. Zheng Q, Shi B, Fan F, Wang X, Yan L, Yuan W, Wang S, Liu H, Li Z and Wang Z L 2014 “In Vivo Powering of Pacemaker by Breathing-Driven Implanted Triboelectric Nanogenerator” Advanced Materials 26 5851-6
[32]. Guo H, Wen Z, Zi Y, Yeh M-H, Wang J, Zhu L, Hu C and Wang Z L 2016 A “Water-Proof Triboelectric-Electromagnetic Hybrid Generator for Energy Harvesting in Harsh Environments”. Advanced Energy Materials 6
[33]. Zhang L, Zhang B, Chen J, Jin L, Deng W, Tang J, Zhang H, Pan H, Zhu M, Yang W and Wang Z L 2016 “Lawn Structured Triboelectric Nanogenerators for Scavenging Sweeping Wind Energy on Rooftops”. Advanced Materials 28 1650-6.
[34]. Mafuné, F., Kohno, J. Y., Takeda, Y., Kondow, T., & Sawabe, H. 2001. “Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant”. The Journal of Physical Chemistry B, 105(22), 5114-5120.
[35]. Simakin, A. V., & Shafeev, G. A. 1995. “Laser-assisted etching-like damage of Si”. Applied surface science, 86(1), 422-427.
[36]. Bass, M., Beck, D., & Copley, S. M. 1979. “Laser assisted machining”. In Fourth European Electro-Optics Conference (pp. 233-240
[37]. Chryssolouris, G., Anifantis, N., & Karagiannis, S. 1997. “Laser assisted machining: an overview”. Journal of manufacturing science and engineering, 119(4B), 766-769.
[38]. Tian, Y., & Shin, Y. C. 2006. “Laser‐Assisted Machining of Damage‐Free Silicon Nitride Parts with Complex Geometric Features via In‐Process Control of Laser Power”. Journal of the American Ceramic Society, 89(11), 3397-3405.
[39]. Rashid, R. R., Sun, S., Wang, G., & Dargusch, M. S. 2012. “The effect of laser power on the machinability of the Ti-6Cr-5Mo-5V-4Al beta titanium alloy during laser assisted machining”. International Journal of machine tools and manufacture, 63, 41-43.
[40]. Klank, H., Kutter, J. P., & Geschke, O. 2002. “CO 2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems”. Lab on a Chip, 2(4), 242-246.
[41]. Kawamura, D., Takita, A., Hayasaki, Y., & Nishida, N. 2006. “Method for reducing debris and thermal destruction in femtosecond laser processing by applying transparent coating”. Applied Physics A, 82(3), 523-527.
[42]. Piqué, A., Auyeung, R. C. Y., Stepnowski, J. L., Weir, D. W., Arnold, C. B., McGill, R. A., & Chrisey, D. B. 2003. “Laser processing of polymer thin films for chemical sensor applications”. Surface and Coatings Technology, 163, 293-299.
校內:2021-12-31公開