| 研究生: |
洪梓瑄 Hung, Zih-Syuan |
|---|---|
| 論文名稱: |
以有限元素分析選擇性雷射熔化應用於不鏽鋼316L之溫度及應力 Analysis of Temperature and Stress by Finite Element Method during Selective Laser Melting of Stainless Steel 316L |
| 指導教授: |
溫昌達
Wen, Chang-Da |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 選擇性雷射熔融 、不鏽鋼316L 、FEM模型 、溫度梯度 、熱應力 |
| 外文關鍵詞: | Selective Laser Melting, Stainless Steel 316L, FEM model, Temperature gradient, Thermal stress |
| 相關次數: | 點閱:70 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在模擬選擇性雷射熔融法對不鏽鋼316L基板與粉末的單層多軌掃描過程,並探討軌道中特定截面的溫度與熱應力作用之分析。研究採用商用軟體ANSYS R18.0建立三維數值模型,並加入熱焓多孔法、間接耦合熱機械建模方法和有限元素法(FEM)模型,模擬分析熱和殘留應力的分布情況的變化。此外,考慮熔池內部馬蘭格尼效應,並改變不同的加工參數,如雷射功率、掃描速率、掃描間距及基板加熱等條件,分析各個條件下之溫度及應力分析。
研究結果顯示,在相同雷射能量功率下,馬蘭格尼效應持續將熔池表面的熱往內部深度方向傳遞,造成熔池最高溫度的下降趨勢,向下擠壓的力會推擠熔池向下和向外,但馬蘭格尼力會將熱往中間堆積,提高熔池的整體溫度,因此後續的討論皆會考慮馬蘭格尼力。隨著雷射功率的增加,SS316L之溫度及相對密度也逐漸增加,且隨著雷射功率越大,溫度及寬度深度也會逐漸增大。當掃描速率增加時,相對密度也會遞減,但遞減的速率比雷射功率低,掃描速率對SS316L的相對密度影響次之。當掃描間距增加時,相對密度也會增加但速度非常緩慢,且當間距增加過0.1mm時其相對密度會遞減,掃描間距對SS316L的相對密度影響最小。在增加不同雷射功率及掃描速率下, SS316L降伏強度和抗拉強度均會提高,但伸長率會降低。當基板逐漸加熱時,在保持較高的降伏強度時,延伸率也得到提升,表現出較好的結構。在高溫熱加熱基板後,應力應變曲線開始表現出脆性行為,材料之結構變形能力降低。改變掃描速率在不同雷射功率下,當掃描速度增加時,熱影響的尺寸減小。增加掃描線速率和減少雷射功率可以減少熱影響區的尺寸,從而降低熱應力,提高材料的結構穩定性和抗應力能力。
This study aims to simulate the single-layer, multi-track scanning process of selective laser melting on stainless steel 316L substrate and powder and investigate the analysis of temperature and thermal stress effects on specific cross-sections along the tracks. A three-dimensional numerical model is established, incorporating the enthalpy-porosity method, indirect coupled thermo-mechanical modeling approach, and FEM. Additionally, the Marangoni effect within the melt pool is considered, and different processing parameters are varied to analyze temperature and stress distributions under various conditions.
The research results demonstrate that the Marangoni effect continuously transfers heat from the surface of the melt pool toward the interior, leading to a decreasing trend in the maximum temperature of the melt pool. It also accumulates heat towards the center, thereby increasing the overall temperature of the melt pool. Therefore, the subsequent analysis considers the influence of the Marangoni force. With the increase in laser power, the temperature and relative density of stainless steel increase, and the width-depth dimensions also enlarge. When the scanning speed increases, the relative density decreases. When the hatching increases, the relative density initially increases and then decreases, with the least impact on the relative density. Under different laser powers and scanning speeds, both the yield strength and tensile strength increase, while the elongation rate decreases. As the substrate gradually heats up, the elongation rate improves while maintaining a higher yield strength, indicating better plasticity. After heating the substrate at high temperatures, the stress-strain curve starts to exhibit brittle behavior, resulting in a reduction in the material's plastic deformation capability. By modifying the scanning speed, a higher scanning speed leads to a smaller heat-affected zone. Increasing the scanning speed and reducing the laser power can decrease the size of the heat-affected zone, thereby improving the material's structural stability and stress resistance.
[1] Bremen, S., Meiners, W., & Diatlov, “A. Selective Laser Melting: A Manufacturing Technology for The Future?” Laser Technik Journal, 9(2), 33-38,2012.
[2] Chang, Shuai, Liqun Li, Li Lu, & Jerry Ying Hsi Fuh, “Selective Laser Sintering of Porous Silica Enabled by Carbon Additive,” Materials 2017, 10, 1313.
[3] Zhao, Zhanyong, Liang Li, Le Tan, Peikang Bai, Jing Li, Liyun Wu, Haihong Liao, & Yahui Cheng, “Simulation of Stress Field during the Selective Laser Melting Process of the Nickel-Based Superalloy, GH4169,” Materials 2018, 11, 1525.
[4] Mani, M., Feng, S., Brandon, L., Donmez, A., Moylan, S., & Fesperman, R, “Measurement Science Needs for Real-time Control of Additive Manufacturing Powder-bed Fusion Processes,” CRC Press, pp. 629-652, 2017.
[5] Yadroitsev, I., Bertrand, P., & Smurov, I, “Factor Analysis of Selective Laser Melting Process Parameters and Geometrical Characteristics of Synthesized Single Tracks,” Rapid Prototyping Journal, 2012.
[6] Spierings, A. B., & Levy, G, “Comparison of Density of Stainless Steel 316L Parts Produced with Selective Laser Melting using Different Powder Grades,” In 2009 International Solid Freeform Fabrication Symposium. University of Texas at Austin, 2009.
[7] Zhou, J., Zhang, Y., & Chen, J. K, “Numerical Simulation of Random Packing of Spherical Particles for Powder-based Additive Manufacturing,” Journal of Manufacturing 91 Science and Engineering, 131(3), 2009.
[8] Fuhrich, T., Berger, P., & Hügel, H., “Marangoni Effect in Laser Deep Penetration Welding of Steel,” Journal of Laser Applications 13, 178, 2001.
[9] Le, Trong-Nhan, Lo, Yu-Lung, “Effects of Sulfur Concentration and Marangoni Convection on Melt-pool Formation in Transition Mode of Selective Laser Melting Process,” Materials and Design 179, 107866, 2019.
[10] Tsotridis, G., Rother, H., & Hondros, E. D., “Marangoni Flow and the Shapes of Laser-melted Pools,” The Science of Nature, 76(5), 216-218, 1989.
[11] Mills, K. C., Keene, B. J., Brooks, R. F., & Shirali, A., “Marangoni Effects in Welding,” Mathematical, Physical and Engineering Sciences, Apr. 15, 1998, Vol. 356, No. 1739, Marangoni and Interfacial Phenomena in Materials Processing, pp. 911-925, 1998.
[12] Han, L., Liou, F. W., & Musti, S, “Thermal Behavior and Geometry Model of Melt Pool in Laser Material Process,” 2005.
[13] Sun, Zhongji, Tan, Xipeng, Tor, Shu Beng, Yeong, Wai Yee, “Selective Laser Melting of Stainless Steel 316L with Low Porosity and High Build Rates,” Materials and Design 104, 197–204, 2016
[14] Liu, Yang, Zhang, Jian, Pang, Zhicong, “Numerical and Experimental Investigation into the Subsequent Thermal Cycling during Selective Laser Melting of Multi-layer 316L Stainless Steel,” Optics and Laser Technology 98 23–32, 2018.
[15] Tsotrid G., Rother H., & Hondros E.D., “Marangoni flow and the shapes of laser-melted pools,” The Science of Nature, Vol. 76, No. 5, pp. 216-218, 1989.
[16] Tian, Y., Yang, L., Zhao, D., Huang, Y., & Pan, J, “Numerical Analysis of Powder Bed Generation and Single Track Forming for Selective Laser Melting of SS316L Stainless Steel,” Journal of Manufacturing Processes, 58, 964-974, 2020.
[17] Li, R., Shi, Y., Wang, Z., Wang, L., Liu, J., & Jiang, W, “Densification Behavior of Gas and Water Atomized 316L Stainless Steel Powder during Selective Laser Melting,” Applied Surface Science, 256(13), 4350-4356, 2010.
[18] Yadroitsev, I., Bertrand, P., Smurov, I., “Parametric Analysis of The Selective Laser Melting Process,” Appl Surf Sci 253(19):8064–8069, 2007.
[19] Xi, W., Song, B., Zhao, Y., Yu, T., & Wang, J, “Geometry and Dilution Rate Analysis and Prediction of Laser Cladding,” The International Journal of Advanced Manufacturing Technology, 103(9), 4695-4702, 2019.
[20] Childs, T. H. C., Hauser, C., & Badrossamay, M, “Mapping and Modeling Single Scan Track Formation in Direct Metal Selective Laser Melting,” CIRP Annals, 53(1), 191- 194, 2004.
[21] Childs, T. H. C., Hauser, C., & Badrossamay, M, “Selective Laser Sintering (Melting) of Stainless and Tool Steel Powders: Experiments and Modeling,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 219(4), 339-357, 2005.
[22] Xi, W., Song, B., Zhao, Y., Yu, T., & Wang, J, “Geometry and Dilution Rate Analysis and Prediction of Laser Cladding,” The International Journal of Advanced Manufacturing Technology, 103(9), 4695-4702, 2019.
[23] Chen, L., Song, X., Zhang, Q., & Lin, J, “FEM Analysis of Thermal and Residual Stress Profile in Selective Laser Melting of 316L Stainless Steel,” Materials Science and Engineering: A, 733, 218-225, 2018.
[24] Klein, R, “Laser Welding of Plastics: Material Properties of Plastics,” 2011.
[25] 張榮華、劉嘉麗。雷射原理及其應用。臺北市:五南圖書出版股份有限公司, 2015。
[26] Lee, K. S., Lin, Y. C., Lee, C. T., Chen, H. W., & Lin, G. R, “Graphene Q-switched, tunable, and amplified Nd: YAG laser,” Optics Express, 25(15), 17113-17118, 2017.
[27] 楊隆昌。雷射發展的趨勢與應用。中工高雄會刊,Vol.22,p.23-33, 2013。
[28] Saleh, B. E. A., & Teich, M. C, “Fundamentals of photonics (2nd ed.),” Wiley, 2007.
[29] Ready, J, “Effects of high-power laser radiation. Elsevier,” 2012.
[30] Hung, Tsung Pin, Shi, Hao En, & Kuang, Jao Hwa, “Temperature Modeling of AISI 1045 Steel during Surface Hardening Processes,” Materials 2018, 11, 1815, 2018.
[31] 楊國輝、黃宏彥。雷射原理與量測概論。新北市:五南圖書出版有限公司, 2001。
[32] 許阿娟、朱嘉雯、林桂芬、陳志隆。光學系統設計進階篇-第九章 高斯光束。取自 http://energy.phys.ncku.edu.tw/optics/book_2/list_1.htm, 2002.
[33] “Gaussian Beam Optics,” Available: http://www.cvimellesgriot.com/.1919–1928, August 1997.
[34] Lorza, Rubén Lostado, García, Rubén Escribano, Martinez, Roberto Fernandez, & Calvo, María Ángeles Martínez, “Using Genetic Algorithms with Multi-Objective Optimization to Adjust Finite Element Models of Welded Joints,” Metals 2018, 8, 230, 2018.
[35] Johnson, R. W., “Stainless Steels for Design Engineers[M],” ASM International, 2008.
[36] Jiang, Y., Xu, Y., Qiu, X., & Yang, W, “Effects of Cr and Ni contents on the Microstructure and Mechanical Properties of 304 Austenitic Stainless Steel,” Materials Science and Engineering: A, 797, 140110, 2020.
[37] Liu, X., Zhang, Y., Li, H., Li, Y., Li, X., & Li, L, “Effect of Quenching Temperature on Microstructure and Mechanical Properties of High Strength Martensitic Stainless Steel,” Journal of Materials Science & Technology, 35(4), 534-540, 2019.
[38] 李志杰、董玉麒、張弘。雙相不鏽鋼及其在化工設備中的應用。化工設計通訊, 2016, 46(4): 8-12, (2016)。
[39] ASM International, “Metals Handbook, Volume 1: Properties and Selection: Irons, Steels, and High-Performance Alloys (10th ed.),” ASM International, 1990.
[40] Liu, Z., Bai, P., & Zhang, H, “A Review of Selective Laser Melting of Aluminum Alloys: Processing, Microstructure, and Properties,” Progress in Materials Science, 88, 467-510, 2017.
[41] Yilbas, B. S., Karatas, C., & Patel, F, “Experimental and Numerical Analysis of Laser Powder bed Fusion Process,” Journal of Materials Processing Technology, 256, 486-495, 2018.
[42] L'vov, B. V., “Thermal Decomposition of Solids and Melts: New Thermochemical 94 Approach to The Mechanism, Kinetics and Methodology (Vol. 7),” Springer Science & Business Media, 2007.
[43] Voller, V. R., & Swaminathan, C. R, “Fixed Grid Techniques for Phase Change Problems in Materials Processing,” Numerical heat transfer, 12(4), 375-388, 1987.
[44] Chen, L., “A Numerical Study of Solidification and Melting using a Fixed-grid Method,” Journal of Materials Processing Technology, 62(1-2), 46-53, 1996.
[45] ANSYS. Ansys Fluent. 15.0 Theory Guide. ANSYS Inc, 2013.
[46] Voller, V. R., & Prakash, C., “A Fixed Grid Numerical Modeling Methodology for Convection-diffusion Mushy Region Phase-change Problems,” International Journal of Heat and Mass Transfer, 30(8), 1709-1719, 1987.
[47] Finite Element Thermal Analysis of Metal Parts Additively Manufactured via Selective Laser Melting. Materials Today: Proceedings, 44, 295-302, 2021.
[48] Shmueli, H., Ziskind, G., & Letan, R, “Melting in a Vertical Cylindrical Tube: Numerical Investigation and Comparison with Experiments,” International Journal of Heat and Mass Transfer, 53(19-20), 4082-4091, 2010.
[49] Patankar, S.V., “Numerical Heat Transfer and Fluid Flow,” Hemisphere Publishing Corporation, 1980.
[50] Versteeg, H.K., & Malalasekera, W, “An Introduction to Computational Fluid Dynamics: The Finite Volume Method,” Pearson Education, 2007.
[51] Tang, C., Tan, J. L., & Wong, C. H, “A Numerical Investigation on the Physical Mechanisms of Single-track Defects in Selective Laser Melting,” International Journal of Heat and Mass Transfer, Vol. 126, pp. 957-968, 2018.
[52] Mills, K. C, “Recommended Values of Thermophysical Properties for Selected Commercial Alloys,” Woodhead Publishing, 2002.
[53] Chawla, T. C., Graff, D. L., Borg, R. C., Bordner, G. L., Weber, D. P., & Miller, D., “Thermophysical Properties of Mixed Oxide Fuel and Stainless Steel Type 316 for use in Transition Phase Analysis,” Nuclear Engineering and Design, Vol. 67, No. 1, pp. 57-74, 1981.
[54] Tian, T., Yang, L., Zhao, D., Huang, Y., & Pan, J., “Numerical Analysis of Powder bed Generation and Single Track Forming for Selective Laser Melting of SS316L Stainless Steel,” Journal of Manufacturing Processes, Vol. 58, pp. 964-974, 2020.
[55] Zhang, Y. M., Lim, C. W. J., Tang, C., & Li, B., “Numerical Investigation on Heat Transfer of Melt Pool and Clad Generation in Directed Energy Deposition of Stainless Steel,” International Journal of Thermal Sciences, Vol. 165, p. 106954, 2021.
[56] Khairallah, S. A., Anderson, A. T., Rubenchik, A., & King, W. E., “Laser Powder-bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones,” Acta Materialia, Vol. 108, pp. 36-45, 2016.
[57] Gusarov, A.V., Yadroitsev, I., Bertrand, Ph., & Smurov, I., “Model of Radiation and Heat Transfer in Laser-powder Interaction Zone at Selective Laser Melting,” Journal of Heat Transfer, Vol. 131, 072101, 2009.
[58] Wang, X., Bai, Q., Chen, C., Liu, Y., & Zhang, Y., “Finite Element Simulation of Residual Stress in Selective Laser Melting of 316L Stainless Steel,” Journal of Materials Processing Technology, Vol. 266, pp. 72-80, 2019.
[59] Yang, Y., et al, “Density and Mechanical Properties in Selective Laser Melting of Invar 36 and Stainless Steel 316L,” Materials & Design, Vol. 183, p. 108143, 2019.
[60] Liu, Z., et al., “Effects of Process Parameters on Densification and Defect Morphology in SLM Fabricated 316L Stainless Steel,” Journal of Materials Processing Technology, Vol. 224, pp. 35-42, 2015.
[61] Klassen, A., Scharowsky, T., & Körner, C., “Evaporation Model for Beam Based Additive Manufacturing using Free Surface Lattice Boltzmann Methods,” Journal of Physics D: Applied Physics, Vol. 47, No. 27, pp. 275303, 2014.
[62] Cao, Y., & H. Wu, “Experimental Investigation of the Startup Performance of a Flat Heat Pipe with Wire Mesh Wick,” Applied Thermal Engineering, Vol. 138, pp. 133-140., 2018.
[63] Wang, T., Zhang, X., & Liu, Z., “Effects of Heating Power on the Startup Performance of a Flat Heat Pipe with Sintered Wick,” International Journal of Heat and Mass Transfer, Vol. 131, pp. 91-100, 2019.
[64] Chen, H., Chen, Y., Lin, Y., & Lin, C., “Effect of SLM Processing Parameters on Microstructures and Mechanical Properties of Al0.5CoCrFeNi High Entropy Alloys,” in IEEE Access, Vol. 9, pp. 28035-28044, 2021.
[65] Smith J. D. and Johnson A. B., "Influence of Laser Power and Scanning Strategy on Residual Stress Distribution in Additively Manufactured 316L Steel," Journal of Additive Manufacturing, Vol. 8, no. 2, pp. 123-135, 2023.
校內:2028-07-24公開