| 研究生: |
謝宗佑 Hsieh, Tsung-Yu |
|---|---|
| 論文名稱: |
智慧生產監控模式設計暨實現技術開發 Intelligent Production Monitoring Model Design and Enabling Technology Development |
| 指導教授: |
陳裕民
Chen, Yuh-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造資訊與系統研究所 Institute of Manufacturing Information and Systems |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 異常偵測 (Anomaly Detection) 、原因分析 (Cause Analysis) 、注意力機制 (Attention Mechanism) |
| 外文關鍵詞: | Anomaly Detection, Cause Analysis, Attention Mechanism |
| 相關次數: | 點閱:47 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
生產監控對於提升生產績效至關重要,透過即時數據的收集與分析,管理者能夠即時掌握生產狀況與趨勢,偵測潛在風險並迅速採取應對措施,以降低損失並確保生產流程的順暢。然而,傳統監控方式主要依賴人工經驗來診斷問題,當缺乏具備豐富經驗的專業人員時,異常處理的效率與效果將大幅下降,甚至可能導致問題無法解決或修復時間過長,進而影響整體生產效率與企業利益。
本研究的核心貢獻在於提出一套結合資料科學與人工智慧技術的智慧生產監控模式,整合當前生產監控的三大關鍵要素:即時異常檢測、準確的效能預測,以及根本原因分析,以期能迅速識別異常成因並持續優化生產流程。
本研究的方法論涵蓋以下幾個步驟:首先,融合多項資料科學概念,設計一套具備循環改善機制的智慧生產監控架構。其次,根據該架構進行具體設計,發展監控點的選擇與分析方法。接著,針對核心功能進行技術開發,包括監控點分析、標準設定、異常偵測與趨勢分析、預測預防與根本原因分析,並建立可解釋的因果分析模型。在技術選擇方面,透過比較多種適用模型,篩選出最佳效能者作為最終應用的方法。最後,透過公開的生產資料集進行模式實驗與驗證,以評估其有效性與實用性。
研究結果顯示,本模式能夠精確識別生產過程中的異常情況,準確預測生產效能異常,並提供具體的監控點特徵與成因分析,有助於管理者快速應對與解決生產異常問題。此模式為製造業的智慧化轉型提供了一套高效且可行的解決方案,提升企業的競爭力與生產效益。
Production monitoring is crucial for enhancing production performance. By collecting and analyzing real-time data, managers can immediately grasp production conditions and trends, identify potential risks, and take rapid countermeasures to minimize losses and ensure a smooth production process. However, traditional monitoring methods rely heavily on human expertise for problem diagnosis. In the absence of experienced specialists, the efficiency and effectiveness of anomaly handling are significantly reduced, sometimes leading to unresolved issues or prolonged repair times, which in turn adversely affect overall production efficiency and corporate profitability.
The core contribution of this study lies in proposing an intelligent production monitoring model that integrates data science and artificial intelligence techniques. This model consolidates three critical elements of current production monitoring—real-time anomaly detection, accurate performance prediction, and root cause analysis—to swiftly pinpoint the sources of anomalies and continuously optimize production processes.
The methodology of this study comprises several steps. First, multiple concepts from data science are synthesized to design an intelligent production monitoring framework featuring a cyclical improvement mechanism. Second, based on this framework, a detailed design is developed to guide the selection and analysis of monitoring points. Third, key functionalities are technically developed, including monitoring point analysis, standard setting, anomaly detection and trend analysis, predictive prevention, and root cause analysis, culminating in an interpretable causal analysis model. In terms of technology selection, various suitable models are compared to identify the one with the best performance for final implementation. Lastly, experiments and validations are conducted using publicly available production datasets to evaluate the model’s effectiveness and practical utility.
The results reveal that the proposed model accurately detects abnormalities in the production process, reliably predicts performance anomalies, and provides detailed insights into the characteristics of monitoring points and their underlying causes, thereby enabling managers to respond to and resolve anomalies promptly. By offering an efficient and feasible solution for the intelligent transformation of the manufacturing sector, this model enhances both corporate competitiveness and production efficiency.
Adadi, A., & Berrada, M. (2018). Peeking inside the black-box: A survey on explainable artificial intelligence (XAI). IEEE Access, 6, 52138-52160.
Albayrak, E., & Erensal, Y. C. (2004). Using analytic hierarchy process (AHP) to improve human performance: An application of multiple criteria decision making problem. Journal of intelligent manufacturing, 15, 491-503.
Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.
Bajic, B., Rikalovic, A., Suzic, N., & Piuri, V. (2020). Industry 4.0 implementation challenges and opportunities: A managerial perspective. IEEE Systems Journal, 15(1), 546-559.
Cerda, P., Varoquaux, G., & Kégl, B. (2018). Similarity encoding for learning with dirty categorical variables. Machine Learning, 107(8), 1477-1494.
Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785-794).
Chen, X., & Voigt, T. (2020). Implementation of the Manufacturing Execution System in the food and beverage industry. Journal of Food Engineering, 278, 109932.
Cheng, J., Dong, L., & Lapata, M. (2016). Long short-term memory-networks for machine reading. arXiv preprint arXiv:1601.06733.
Choudhary, A., Harding, J. A., & Tiwari, M. K. (2009). Data mining in manufacturing: a review based on the kind of knowledge. Journal of Intelligent Manufacturing, 20(5), 501-521.
Çınar, Z. M., Abdussalam Nuhu, A., Zeeshan, Q., Korhan, O., Asmael, M., & Safaei, B. (2020). Machine learning in predictive maintenance towards sustainable smart manufacturing in industry 4.0. Sustainability, 12(19), 8211.
Cleveland, W. S. (2001). Data science: an action plan for expanding the technical areas of the field of statistics. International statistical review, 69(1), 21-26.
Corinna Cortes, Vladimir Vapnik (1995). "Support-vector networks." Machine Learning, 20(3), 273-297.
De Toni, A., & Tonchia, S. (1998). Manufacturing flexibility: a literature review. International journal of production research, 36(6), 1587-1617.
ElMaraghy, H., Monostori, L., Schuh, G., & ElMaraghy, W. (2021). Evolution and future of manufacturing systems. CIRP Annals, 70(2), 635-658.
Fisher, A., Rudin, C., & Dominici, F. (2019). All Models are Wrong, but Many are Useful: Learning a Variable's Importance by Studying an Entire Class of Prediction Models Simultaneously. Journal of Machine Learning Research, 20(177), 1-81.
Friedman, J. H. (2001). Greedy Function Approximation: A Gradient Boosting Machine. Annals of Statistics, 29(5), 1189-1232.
Geary, R., & Cosgrove, J. (2023). Manufacturing reliability and cost improvements through data analytics: an industry case study. Procedia Computer Science, 217, 395-402.
Ge, Z., Song, Z., & Gao, F. (2013). Review of recent research on data-based process monitoring. Industrial & Engineering Chemistry Research, 52(10), 3543-3562.
Gereffi, G., Humphrey, J., & Sturgeon, T. (2005). The governance of global value chains. Review of International Political Economy, 12(1), 78-104.
Gosling, J., & Naim, M. M. (2009). Engineer-to-order supply chain management: A literature review and research agenda. International journal of production economics, 122(2), 741-754.
Gryzlov, A., Safonov, S., & Arsalan, M. (2022). Intelligent production monitoring with continuous deep learning models. SPE Journal, 27(02), 1304-1320.
Gunning, D., & Aha, D. W. (2019). DARPA's explainable artificial intelligence program. AI Magazine, 40(2), 44-58.
Guo, C., & Berkhahn, F. (2016). Entity embeddings of categorical variables. arXiv preprint arXiv:1604.06737.
Hancock, J. T., & Khoshgoftaar, T. M. (2020). Survey on categorical data for neural networks. Journal of big data, 7(1), 28.
Hassani, I. E., Mazgualdi, C. E., & Masrour, T. (2019). Artificial intelligence and machine learning to predict and improve efficiency in manufacturing industry. arXiv preprint arXiv:1901.02256.
Helber, S., Kok, T., Kuhn, H., Manitz, M., Matta, A., & Stolletz, R. (2019). Quantitative approaches in production management. OR Spectrum, 41, 867-870.
Hermann, M., Pentek, T., & Otto, B. (2016, January). Design principles for industrie 4.0 scenarios. In 2016 49th Hawaii international conference on system sciences (HICSS) (pp. 3928-3937). IEEE.
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
IoT, W. (2017). Descriptive, predictive, prescriptive: Transforming asset and facilities management with analytics. IBM paper, at: http://www-01. ibm. com/common/ssi/cgi-bin/ssialias.
Imran, A. A., Rahim, M. S., & Ahmed, T. (2021). Mining the productivity data of the garment industry. International Journal of Business Intelligence and Data Mining, 19(3), 319-342.
Jankovič, D., Šimic, M., & Herakovič, N. (2024). A comparative study of machine learning regression models for production systems condition monitoring. Advances in Production Engineering & Management, 19(1).
Kashpruk, Nataliia, Cezary Piskor-Ignatowicz, and Jerzy Baranowski. "Time Series Prediction in Industry 4.0: A Comprehensive Review and Prospects for Future Advancements." Applied Sciences 13.22 (2023): 12374.
Keiji Tatsumi, Ryota Masui, Haruhisa Miyahara, Yeboon Yun. (2024). Multiclass piecewise-linear SVMs with the restricted feasible region for the reinforcement degrees in constructing large-scale structures. Knowledge-Based Systems 300 (2024) 112197.
Kiran, D. R. (2016). Total quality management: Key concepts and case studies. Butterworth-Heinemann.
Kusiak, A. (2017). Smart manufacturing must embrace big data. Nature, 544(7648), 23-25.
Labib, A. W., O’Connor, R. F., & Williams, G. B. (1998). An effective maintenance system using the analytic hierarchy process. Integrated Manufacturing Systems, 9(2), 87-98.
Lee, J., Bagheri, B., & Kao, H. A. (2015). A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufacturing letters, 3, 18-23.
Lee, J., Jun, S., Chang, T. W., & Park, J. (2017). A smartness assessment framework for smart factories using analytic network process. Sustainability, 9(5), 794.
Lee, J., Kao, H. A., & Yang, S. (2014). Service innovation and smart analytics for industry 4.0 and big data environment. Procedia cirp, 16, 3-8.
Lepenioti, K., Bousdekis, A., Apostolou, D., & Mentzas, G. (2020). Prescriptive analytics: Literature review and research challenges. International Journal of Information Management, 50, 57-70.
Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025.
Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. Advances in neural information processing systems, 30.
Marta Baldomero-Naranjoa, Luisa I. Martínez-Merino, Antonio M. Rodríguez-Chía. (2021). A robust SVM-based approach with feature selection and outliers detection for classification problems. Expert Systems With Applications 178 (2021) 115017.
Mawson, V. J., & Hughes, B. R. (2020). Deep learning techniques for energy forecasting and condition monitoring in the manufacturing sector. Energy and Buildings, 217, 109966.
Md, A. Q., Jha, K., Haneef, S., Sivaraman, A. K., & Tee, K. F. (2022). A review on data-driven quality prediction in the production process with machine learning for industry 4.0. Processes, 10(10), 1966.
Nguyen, T. A. V., Tucek, D., & Pham, N. T. (2023). Indicators for TQM 4.0 model: Delphi method and analytic hierarchy process (AHP) analysis. Total Quality Management & Business Excellence, 34(1-2), 220-234.
Mittal, S., Khan, M. A., Romero, D., & Wuest, T. (2018). A critical review of smart manufacturing & Industry 4.0 maturity models: Implications for small and medium-sized enterprises (SMEs). Journal of manufacturing systems, 49, 194-214.
Mu, E., & Pereyra-Rojas, M. (2016). Practical decision making: an introduction to the Analytic Hierarchy Process (AHP) using super decisions V2. Springer.
Moen, R., & Norman, C. (2006). Evolution of the PDCA cycle.
Molnar, C. (2020). Interpretable machine learning. Lulu. com.
Nassif, A. B., Talib, M. A., Nasir, Q., & Dakalbab, F. M. (2021). Machine learning for anomaly detection: A systematic review. Ieee Access, 9, 78658-78700.
Ong, S. K., Nee, A. Y. C., & Tan, R. B. H. (2015). Weighted association rule mining for root cause analysis in manufacturing. Procedia CIRP, 26, 108-113.
Parikh, A. P., Täckström, O., Das, D., & Uszkoreit, J. (2016). A decomposable attention model for natural language inference. arXiv preprint arXiv:1606.01933.
Parmar, P., & Deshpande, V. (2014). Implementation of Statistical Process Control Techniques in Industry: A Review. Journal of emerging technologies and innovative research.
Poornima, S., & Pushpalatha, M. (2020). A survey on various applications of prescriptive analytics. International Journal of Intelligent Networks, 1, 76-84.
Potdar, K., Pardawala, T. S., & Pai, C. D. (2017). A comparative study of categorical variable encoding techniques for neural network classifiers. International journal of computer applications, 175(4), 7-9.
Ribeiro, M. T., Singh, S., & Guestrin, C. (2016, August). Why should I trust you? Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1135-1144).
Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 1(5), 206-215.
Rüßmann, M., Lorenz, M., Gerbert, P., Waldner, M., Justus, J., Engel, P., & Harnisch, M. (2015). Industry 4.0: The future of productivity and growth in manufacturing industries. Boston consulting group, 9(1), 54-89.
Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International journal of services sciences, 1(1), 83-98.
Sajid, S., Haleem, A., Bahl, S., Javaid, M., Goyal, T., & Mittal, M. (2021). Data science applications for predictive maintenance and materials science in context to Industry 4.0. Materials Today: Proceedings.
Saritha, B., Bonagiri, R., & Deepika, R. (2021). Open source technologies in data science and big data analytics. Materials Today: Proceedings.
Schuh, G., Gützlaff, A., & Schlosser, T. X. (2022, December). Influence of the Degree of Centralization on the Decision Quality in Production Management. In 2022 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM) (pp. 0901-0905). IEEE.
Sipahi, S., & Timor, M. (2010). The analytic hierarchy process and analytic network process: an overview of applications. Management decision, 48(5), 775-808.
Songming Li, Guohua Chen, Jinkun Men, Xiaofeng Li, Yimeng Zhao, Qiming Xu, Jie Zhao. (2024). A novel dynamic risk assessment method for hazardous chemical warehouses based on improved SVM and mathematical methodologies. Journal of Loss Prevention in the Process Industries 89 (2024) 105302.
Subramanian, N., & Ramanathan, R. (2012). A review of applications of Analytic Hierarchy Process in operations management. International Journal of Production Economics, 138(2), 215-241.
Szirmai, A., & Verspagen, B. (2015). Manufacturing and economic growth in developing countries, 1950–2005. Structural change and economic dynamics, 34, 46-59.
Tang, Y., Sun, H., Yao, Q., & Wang, Y. (2014). The selection of key technologies by the silicon photovoltaic industry based on the Delphi method and AHP (analytic hierarchy process): Case study of China. Energy, 75, 474-482.
Tanuska, P., Spendla, L., Kebisek, M., Duris, R., & Stremy, M. (2021). Smart anomaly detection and prediction for assembly process maintenance in compliance with industry 4.0. Sensors, 21(7), 2376.
Tan, D., Suvarna, M., Tan, Y. S., Li, J., & Wang, X. (2021). A three-step machine learning framework for energy profiling, activity state prediction and production estimation in smart process manufacturing. Applied Energy, 291, 116808.
Tao, F., Qi, Q., Liu, A., & Kusiak, A. (2018). Data-driven smart manufacturing. Journal of Manufacturing Systems, 48, 157-169.
Thor, J., Lundberg, J., Ask, J., Olsson, J., Carli, C., Härenstam, K., & Brommels, M. (2007). Application of statistical process control in healthcare improvement: systematic review. Quality and Safety in Health Care, 16, 387-399.
Tran, K. P. (Ed.). (2022). Control charts and machine learning for anomaly detection in manufacturing. Cham: Springer.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing systems (pp. 5998-6008).
Vries, A., & Reneau, J. (2010). Application of statistical process control charts to monitor changes in animal production systems. Journal of animal science, 88 13 Suppl, E11-24.
Wang, J., Ma, Y., Zhang, L., Gao, R. X., & Wu, D. (2018). Deep learning for smart manufacturing: Methods and applications. Journal of Manufacturing Systems, 48, 144-156.
Wang, L., Chu, J., & Wu, J. (2007). Selection of optimum maintenance strategies based on a fuzzy analytic hierarchy process. International journal of production economics, 107(1), 151-163.
Wang, Z., Wang, Y., Gao, C., Wang, F., Lin, T., & Chen, Y. (2022). An adaptive sliding window for anomaly detection of time series in wireless sensor networks. Wireless Networks, 1-19.
Williams, T. (1980). Operations Management: Production of Goods and Services. Journal of the Operational Research Society, 32, 156.
Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., ... & Bengio, Y. (2015). Show, attend and tell: Neural image caption generation with visual attention. In International conference on machine learning (pp. 2048-2057).
Yang, C. C. (2017). The evolution of quality concepts and the related quality management. In Quality Control and Assurance-An Ancient Greek Term Re-Mastered. IntechOpen.
Xu, X., Lu, Y., Vogel-Heuser, B., & Wang, L. (2021). Industry 4.0 and Industry 5.0—Inception, conception and perception. Journal of Manufacturing Systems, 61, 530-535.
Yin, S., Ding, S. X., Xie, X., & Luo, H. (2014). A review on basic data-driven approaches for industrial process monitoring. IEEE Transactions on Industrial Electronics, 61(11), 6418-6428.
You, Q., Jin, H., Wang, Z., Fang, C., & Luo, J. (2016). Image captioning with semantic attention. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4651-4659).
Zhanwen, W., Fei, Z., Feng, Z., Jinxin, W., Zhaolong, Z., Xiaolei, G., & Pingxiang, C. (2023). Investigation of the customized furniture industry’s production management systems. Journal of Engineering Research, 11, 164-175.
Zhang, Q., & Zhu, S. C. (2018). Visual interpretability for deep learning: a survey. Frontiers of Information Technology & Electronic Engineering, 19(1), 27-39.
Zhang, Y., Ren, S., Liu, Y., & Si, S. (2017). A big data analytics architecture for cleaner manufacturing and maintenance processes of complex products. Journal of Cleaner Production, 142, 626-641.
Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., & Gao, R. X. (2019). Deep learning and its applications to machine health monitoring. Mechanical Systems and Signal Processing, 115, 213-237.
Zonta, T., Da Costa, C. A., da Rosa Righi, R., de Lima, M. J., da Trindade, E. S., & Li, G. P. (2020). Predictive maintenance in the Industry 4.0: A systematic literature review. Computers & Industrial Engineering, 150, 106889.
陳昇瑋. (2017, May).讓資料為你產生價值. Retrieved from:https://www.hbrtaiwan.com/article_content_AR0007025.html (May. 8,2021)
陳姿蓉. (2018). 智能化食品安全監控與管理系統設計. 成功大學製造資訊與系統研究所學位論文, 1-91.
黃郁珊. (2021). 具持續改善機制之食品品質監控模型與分析方法研究. 成功大學製造資訊與系統研究所學位論文, 1-102.