研究生: |
胡智鈞 Hu, Chih-Chun |
---|---|
論文名稱: |
以液相沈積法製備III-V金氧半高電子移動率電晶體之高介電閘極層 Liquid-Phase-Deposited High-κGate Dielectrics on III-V Metal Oxide Semiconductor High Electron Mobility Transistors |
指導教授: |
王永和
Wang, Yeong-Her |
共同指導教授: |
李冠慰
Lee, Kuan-Wei |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 94 |
中文關鍵詞: | 氮化鋁鎵/氮化鎵 、高電子移動率電晶體 、液相沉積法 、金屬氧化物半導體 、高介電材料 |
外文關鍵詞: | AlGaN/GaN, High Electron Mobility Transistor, Liquid Phase Deposition, Metal–Oxide–Semiconductor, high-k material |
相關次數: | 點閱:149 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究以液相沈積法製備III-V金氧半高電子移動率電晶體之高介電閘極層,由於氮化鎵系列材料具有高電子飽和飄移速度、寬能隙、高崩潰電場、以及高熱傳導係數等優點,因此氮化鎵系列高電子移動率電晶體(HEMT)在高速、高功率電子元件的應用上獲得廣泛的研究與良好的成果,卓越的寬能隙特性造就它適合操作在高溫及耐化學腐蝕的環境。但是為了改善高電子移動率電晶體表面/介面相關的問題,在閘極與半導體間加入一介電層,形成金屬-介電層/氧化層-半導體的結構元件,其中介電層材料的選擇包含二氧化矽、氮化矽、氧化鋁等,研究成果顯示此金屬/氧化層/半導體結構元件能有有效的改善表面/介面相關的問題,但由於在閘極與半導體中間導入絕緣層的關係,使得元件的轉導與臨界電壓狀態受到負面的影響,在本研究中我們使用高介電常數材料作為閘極介電層能效地克服轉導下降與臨界電壓偏移的問題。
液相沉積法是一便宜簡單的沉積方式,不需要外加額外的能量或電壓,且可於低溫下進行,減少熱應力造成的缺陷。數種不同的高介電氧化層包括二氧化鈦、鋇摻雜二氧化鈦及二氧化鋯皆以液相沉積法沉積,並利用X射線光電子能譜、X射線繞測分析等針對各項儀器進行化學、物理性分析。使用高介電常數材料研製金氧半高電子移動率電晶體,與傳統高電子移動率電晶體相比,金氧半高電子移動率電晶體具有較小之閘極漏電流,較高之崩潰電壓與汲極電流,且轉導與臨界電壓的特性並沒有大幅度的衰退,此外亦能有效改善表面態位,降低界面散射。另外,本論文也將探討液相沉積法成長二氧化鈦於砷化鋁鎵,經硫化氨與熱退火處理過後對於介電層與元件特性的影響。最後本論文將探討使用溶膠-凝膠法研製二氧化鈦於N型的砷化銦鎵場效電晶體上,實現了增強型砷化銦鎵場效電晶體,結果顯示二氧化鈦也適合應用在備製增強型操作砷化銦鎵場效電晶體。
GaN-based high-electron mobility transistors (HEMTs) have gained much attention for their applications in high-power, high-frequency, and high-temperature devices due to their wide bandgap, high breakdown voltage, and high saturated electron velocity. However, AlGaN/GaN HEMTs still have surface/interface-related problems, including high gate leakage current, collapse in drain current, and low gate voltage swing, which may limit corresponding applications. An alternative structure, namely, a metal–insulator/oxide–semiconductor (MIS/MOS), was incorporated on GaN-based devices using a thin insulator film between the gate electrode and the semiconductor. The use of insulators, including SiO2, SiN, and Al2O3 as gate dielectrics, have shown that these problems could be alleviated, but with a significant decrease in device transconductance and a large shift in threshold voltage. These problems can be overcome using a dielectric with high permittivity.
MOSHEMTs with high-κgate dielectrics could translate into a more efficient modulation; thus, a small decrease in device transconductance and a slight increase in threshold voltage could be expected in AlGaN/GaN MOSHEMTs. LPD technique provides a simple, low-cost, less complex, and reliable method to obtain large area oxide thin films at low temperature. Several different materials, including TiO2, Ba-doped TiO2, and ZrO2, were deposited and analyzed by XPS, XRD, etc. The demonstrated MOSHEMTs with high-κ gate dielectrics show higher maximum gate bias with a higher drain current density, higher breakdown voltage, and lower gate leakage current density, as compared with the conventional HEMT. Furthermore, the properties of the LPD-TiO2 film deposited on (NH4)2Sx-treated AlGaAs were also investigated. In addition, TiO2 films prepared via the sol–gel solution process were deposited on n-type In0.53Ga0.47As to realize the enhancement-mode (E-mode) In0.53Ga0.47As MOSFET. This indicates that the sol–gel processed TiO2 as a gate dielectric was suitable for E-mode In0.53Ga0.47As MOSFET applications.
[1] H. Morkoc, S. STrite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, J. Appl. Phys., vol. 76, 1994.
[2] S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, and J. W. Palmour, IEEE Electron Device Lett., vol. 20, 1999.
[3] I. Nomura, K. Kishino, and A. Kikuchi, vol. 41, 1997.
[4] S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett., vol. 64, 1994.
[5] T. P. Chow and R. Tyagi, IEEE Trans. Elect. Dev., vol. 41, 1994.
[6] M. A. Kahn, J. N. Kuznia, A. R. Bhattrai, and D. T. Olson, Appl. Phys. Lett., vol. 62, 1993.
[7] Y. Uzawa, Z. Wang, A. Osinsky, and B. Komiyama, Appl. Phys. Lett., vol. 66, 1995.
[8] S. J. Pearton, GaN and Related Materials, Gordon and Breach Science Publishers, 1997.
[9] Z. Z. Bandic, P. M. Bridger, E. C. Piquette, T. C. McGill, R. P. Vaudo, V. M. Phanse, and J. M. Redwing, vol. 74, 1999.
[10] M. A. Littlejohn, J. R. Hauser, and T. H. Glisson, Appl. Phys. Lett., vol. 26, 1975.
[11] U. V. Bhapkar and M. S. Shur, J. Appl. Phys., vol. 82, 1997.
[12] R. Gaska, J. W. Yang, A. Osinsky, Q. chen, M. A. Khan, A. O. Orlov, G. L. Snider, and M. S. Shur, Appl. Phys. Lett., vol. 72, 1998.
[13] V. Adivarahan, J. Yang, A. Koudymov, G. Simin, and M. A. Khan, IEEE Electron Device Lett., vol. 26, 2005.
[14] S. Yagi, M. Shimizu, M. Inada, Y. Yamamoto, G. Piao, H. Okumura, Y. Yano, N. Akutsu, and H. Ohashi, vol. 50, 2006.
[15] S. Basu, P. K. Singh, P. W. Sze, and Y. H. Wang, J. Electrochem. Soc., vol. 157, 2010.
[16] H. C. Chiu, C. W. Lin, C. H. Chen, C. W. Yang, C. K. Lin, J. S. Fu, L. B. Chang, R. M. Lin, and K. P. Hsueh, J. Electrochem. Soc., vol. 157, 2010.
[17] C. Liu, E. F. Chor, and L. S. Tan, Appl. Phys. Lett., vol. 88, 2006.
[18] J. Kuzmik, G. Konstantinidis, S. Harasek, S. Hascik, E. Bertagnolli, A. Georgakilas, and D. Pogany, Semicond. Sci. Technol., vol. 19, 2004.
[19] J. J. Huang, P. W. Sze, W. C. Lai, Y. H. Wang, and M. P. Houng. , Physical Scripta, vol. T114, 2004.
[20] J. Kuzmik, G. Konstantinidis, S. Harasek, S. Hascik, E. Bertagnolli, A. Georgakilas, and D. Pogany, Semicond. Sci. Technol., vol. 19, 2004.
[21] H. Tang, K. Prasad, R. Sanjines, P. E. Schmid, and F. Levy, J. Appl. Phys., vol. 75, 1994.
[22] X. H. Xu, M. Wang, Y. Hou, S. R. Zhao, H. Wang, D. Wang, and S. X. Shang, Cryst. Res. Technol., vol. 37, 2002.
[23] J. J. Cheng and J. M. Wu, Jpn. J. Appl. Phys., vol. 35, 1996.
[24] J. M. Wu and C. J. Chen, J. Mater. Sci., vol. 23, 1988.
[25] J. A. Duffy, Bonding Energy Levels and Bands in Inorganic Solids, John Wiley: New York, 1990.
[26] S. A. Campbell, D. C. Gilmer, X. Wang, M. T. Hsieh, H. S. Kim, W. L. Gladfelter, and J. H. Yan, IEEE Trans. Elect. Dev., vol. 44, 1997.
[27] S. Yagi, M. Shimizu, M. Inada, Y. Yamamoto, G. Piao, H. Okumura, Y. Yano, N. Akutsu, and H. Ohashi, Solid-State Electronics, vol. 50, 2006.
[28] P. J. Hansen, V. Vaithyanathan, Y. Wu, T. Mates, S. Heikman, U. K. Mishra, R. A. York, D. G. Schlom, and J. S. Speck, J. Vac. Sci. Technol. B, Microelectron. Process. Phenom., vol. 23, 2005.
[29] G. K. Dalapati, A. Sridhara, A. S. W. Wong, C. K. Chia, S. J. Lee, and D. Chi, J. Appl. Phys., vol. 103, 2008.
[30] J. D. Deloach, G. Scarel, and C. R. Aita, J. Appl. Phys., vol. 85, 1999.
[31] H. Nagayama, H. Honda, and H. Kawahara, J. Electrochem. Soc., vol. 135, 1988.
[32] S. Deki, Y. Aoi, O. Hiroi, and A. Kajinami, Chemistry Letters, vol. 25, 1996.
[33] H. Nagayama, H. Honda, and H. Kawahara, J. Electrochem. Soc., vol. 135, 1988.
[34] P. M. Kumar, S. Badrinarayanan, and M. Sastry, Thin Solid Films, vol. 358, 2000.
[35] J. G Yu, H. G. Yu, B. Cheng, X. J. Zhao, J. C. Yu, W. K. Ho, Journal of Physical Chemistry B, vol. 107, 2003
[36] S. E. Haggerty, J. R. Smyth, A. J. Erlank, R. S. Rickard, and R. V. Danchin, American Mineralogist, vol. 68, 1983.
[37] T. Y. Wu, S. K. Lin, P. W. Sze, J. J Huang, W.C. Chien, C. C. Hu, M. J. Tsai, and Y. H. Wang, IEEE Trans. Elect. Dev., vol. 56, 2009.
[38] C. Liu, E. F. Chor, and L. S. Tan, Appl. Phys. Lett., vol. 88, 2006.
[39] M. A. Khan, X. Hu, G. Sumin, A. Lunev, J. Yang, R. Gaska, and M. S. Shur, IEEE Electron Device Lett., vol. 21, 2000.
[40] D. A. Neamen, Semiconductor Physics And Devices, Chapter 12, McGraw-Hill, 2003.
[41] J. W. Chung, J. C. Roberts, E. L. Piner, and T. Palacios, IEEE Electron Device Lett., vol. 29, 2008.
[42] T. Mizutani, Y. Ohno, M. Akita, S. Kishimoto, and K. Maezawa, IEEE Trans. Electron Devices, vol. 50, 2003.
[43] J. A. Mittereder, S. C. Binari, P. B. Klein, J. A. Roussos, D. S. Katzer, D. F. Storm, D. D. Koleske, A. E. Wickenden, and R. L. Henry, Appl. Phys. Lett., vol. 83, 2003.
[44] B. Luo, J. W. Johnson, J. Kim, R. M. Mehandru, F. Ren, B. P. Gila, A. H. Onstine, C. R. Abernathy, S. J. Pearton, A. G. Baca, R. D. Briggs, R. J. Shul, C. Monier, and J. Han, Appl. Phys. Lett., vol. 80, 2002.
[45] J. Joh, J. A. del Alamo, and J. Jimenez, IEEE Electron Device Lett., vol. 29, 2008.
[46] B. Luo, R. Mehandru, J. Kim, F. Ren, B. P. Gila, A. H. Onstine, C. R. Abernathy, S. J. Pearton, R. Fitch, J. Gillespie, T. Jenkins, J. Sewell, D. Via, A. Crespo, and Y. Irokawa, J. Electrochem. Soc., vol. 149, 2002.
[47] S. Basu, P. K. Singh, S. K. Lin, P. W. Sze, Y. H. Wang, IEEE Trans Electron Devices, vol. 57, 2010.
[48] C. C. Hu, M. S. Lin, T. Y. Wu, F. Adriyanto, P. W. Sze, C. L. Wu, and Y. H. Wang, IEEE Trans Electron Devices, vol. 59, 2012.
[49] J. A. Duffy, Bonding Energy Levels and Bands in Inorganic Solids, John Wiley: New York, 1990.
[50] S. A. Campbell, D. C. Gilmer, X. Wang, M. T. Hsieh, H. S. Kim, W. L. Gladfelter, and J. H. Yan, IEEE Trans. Elect. Dev., vol. 44, 1997.
[51] C. Morant, J. M. Sanz, L. Galan, L. Soriano, and F. Rueda, vol. 218, 1989.
[52] D. W. Greve, Prentice-Hall, Englewood Cliffs, NJ, 1998.
[53] S. Russo, A. D. Carlo, IEEE Trans Electron Devices, vol. 54, 2007.
[54] C. Liu, E. F. Chor, and L. S. Tan, Appl. Phys. Lett., vol.88, 2006.
[55] R. Lyer, R.R. Chang, A. Dubey, D.L. Lile, J. Vac. Sci. Technol. B, vol. 6, 1988.
[56] M. Yokozawa, H. Iwasa, I. Teramoto, Jpn. J. Appl. Phys., vol. 7, 1967.
[57] G. Battiston, R. Gerbasi, M. Porchia, A. Marigo, Thin Solid Films, vol. 239, 1994.
[58] H.K. Ha, M. Yoshimoto, H. Koinuma, B.K. Moon, H. Ishiwara, Appl. Phys. Lett., vol. 68, 1996.
[59] N. Martin, C. Rousselot, C. Savall, F. Palmino, Thin Solid Films, vol. 287, 1996.
[60] T.S. Yang, C.B. Shiu, M.S.Wong, Surf. Sci., vol. 548, 2004.
[61] X.P. Wang, Y. Yu, X.F. Hu, L. Gao, Thin Solid Films, vol. 371, 2000.
[62] M.K. Lee, J.J. Huang, C.M. Shih, C.C. Cheng, Jpn. J. Appl. Phys., vol. 41, 2002.
[63] M.K. Lee, H.C. Lee, C.M. Hsu, Mater. Sci. Semicond. Process., vol. 10, 2007.
[64] M. Mallak, M. Bockmeyer, P. Löbmann, Solid State Electron., vol. 515, 2007.
[65] K.W. Lee, J.S. Huang, Y.L. Lu, F.M. Lee, H.C. Lin, T.Y. Wu, Y.H. Wang, Solid State Electron., vol. 68, 2012.
[66] J.K. Yang,M.G. Kang, H.H. Park, J. Appl. Phys., vol. 96, 2004.
[67] L.M. Terman, Solid State Electron., vol. 5, 1962.
[68] P. Moriarty, B.Murphy, L. Roberts, A.A. Cafolla, G. Hughes, L. Koenders, P. Bailey, D.A. Woolf, Appl. Phys. Lett., vol. 67, 1995.
[69] S. M. Sze, Semiconductor Devices: Physics and Technology, Wiley & Sons Inc., pp.316-369, 1983.
[70] K. Bjorkqvist, T. Arnborg, Phys. Scr.,vol. 24, 1981.
[71] J. Robertson, Rep. Prog. Phys., vol. 69, 2006.
[72] S. H. Lo, D. A. Buchanan, Y. Taur, W. Wang, IEEE Electron Device Lett., vol. 18, 1997.
[73] L. J. Lauho, M. S. Gudiksen, D. Wang, C. M. Lieber, Nature, vol. 420, 2002.
[74] Y. Cui, Z. Zhong, D. Wang, W. U. Wang, C. M. Lieber, Nano Lett., vol. 3, no. 2, 2003.
[75] T. Ashley, A. B. Dean, C. T. Elliott, R. Jefferies, F. Khaleque, T. J. Phillips, IEDM Tech. Dig., vol. 97, 1997.
[76] Y. Royter, K. R. Elliott, P. W. Deelman, R. D. Rajavel, D. H. Chow, I. Milosavljevic, C. H. Fields, IEDM Tech. Dig., vol. 3, 2003.
[77] M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts, A. M. Sergent, Science, vol. 5409, 1999.
[78] K. Iiyama, Y. Kita, Y. Ohta, M. Nasuno, S. Takamiya, K. Higashimine, N. Ohtsuka, IEEE Trans. Electron Devices, vol. 49, 2002.
[79] J. Kuzmik, G. Konstantinidis, S. Harasek, S. Hascik, E. Bertagnolli, A. Georgakilas, D. Pogany, Semicond. Sci. Technol., vol. 19, 2004.
[80] S. K. Rout, T. Badapanda, S. Panigrahi, J. Pure Appl. Phys., vol. 45, 2007.
[81] H. Tang, K. Prasad, R. Sanjines, P. E. Schmid, F. Levy, J. Appl. Phys., vol. 75, 1994.
[82] X. H. Xu, M. Wang, Y. Hou, S. R. Zhao, H. Wang, D. Wang, S. X. Shang, Cryst. Res. Technol., vol. 37, 2002.
[83] J. Ahn, I. Geppert, M. Gunji, M. Holland, I. Thayne, M. Eizenberg, P. C. Mclntyre, Appl. Phys. Lett., vol. 99, 2011.
[84] C. Mahata, S. Mallik, T. Das, C. K. Maiti, G. K. Dalapati, C. C. Tan, C. K. Chia, H. Gao, M. K. Kumar, S. Y. Chiam, H. R. Tan, H. L. Seng, D., Z. Chi, E. Miranda, Appl. Phys. Lett., vol. 100, 2012.
[85] R. E. Herbert, Y. Hwang, J. LeBeau, Y. Zheng, and S. Stemmer, MRS Proceedings, vol. 1155, 2009.
[86] L. Fu, P. Lever, H. H. Tan, C. Jagadish, P. Reece, M. Gal, Appl. Phys. Lett., vol.82, 2003.
[87] S. P. Mukherjee, J. Non-Cryst. Solids, vol. 42, 1980.
[88] H. Dislich, P. Hinz, J. Non-Cryst. Solids, vol. 48, 1982.
[89] D. P. Partlow, B. E. Yoldas, J. Non-Cryst. Solids, vol. 46, 1981.
[90] G. D. Wilk, R. M. Wallace, J. M. Anthony, J. Appl. Phys., vol. 89, 2001.
[91] S. Ivana, E. Subramanian, Y. J. Kong, Q. Zhou, and Y. C. Yeo, in: Proceedings of the International Semiconductor Device Research Symposium (ISDRS), pp. 1–2, 2011,
[92] S. H. Kim, M. Yokoyama, N. Yaoka, R. Iida, S. Lee, R. Nakane, Y. Urabe, N. Miyata, T. Yasuda, H. Yamada, N. Fukuhara, M. Hata, M. Takenaka, S. Takagi, Appl. Phys. Express, vol. 4, no. 2, pp. 024201-1–024201-3, 2011.