| 研究生: |
郭婷婷 Kuo, Ting-Ting |
|---|---|
| 論文名稱: |
生質酒精政策相關之土地利用改變及其永續性評估 Sustainability aspects of land use changes associated with ethanol supply policy |
| 指導教授: |
福島康裕
Yasuhiro FUKUSHIMA |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 生質酒精 、永續性 、自給自足 、土地利用改變 、耗水量 、政策之可能影響 |
| 外文關鍵詞: | bio-ethanol, self-sufficiency, land use change, water consumption, policy implications |
| 相關次數: | 點閱:141 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
日漸減少的天然化石資源驅使以生質廢棄物和能源作物來轉換產生燃料。然而,環顧全球,生質燃料的製造與日增長,同時也受到正面及負面的關注。
於本研究中採用最佳化模式來評估生質酒精推廣政策於區域的永續性之潛在影響。換言之,評估區域的生產力以及自給自足(包含食物、動物飼料及氮肥料)之改變,於市場機制下假設土地利用之改變,並考慮有限的土地及水資源的競爭。本研究提出三項方法來達到未來生質酒精之需求,敘述如下:1) 利用未被使用的料源,如農業廢棄物,2) 提供更多土地供能源作物生長以生產酒精,3) 藉由高生質產量的作物品種來提升土地之生產率。以上各方法皆會導致區域之土地利用及水資源之改變。
於模式中,目標式為收益最大化,並利用能源、食物、動物飼料及氮肥料之供給與需求關係,進一步決定設計變數─土地利用。因此,本研究之個案採用台南地區,該區提供台灣農產品及來自高科技產業之收入,並有約一百八十七萬之人口。
結果顯示可滿足未來2025年E10(以體積比90%汽油與10%無水酒精之混合燃料)之需求,並維持四項自給自足率(self-sufficiency rate),包含食物、水、動物飼料及氮肥料皆可大於等於1,但農業廢棄物及休耕土地之利用是必要的。同時也觀察到由產生農產品轉移至食物及燃料或甚至只產生燃料的土地利用改變,於豐水與枯水條件下,土地利用轉移也有不同的分配以生產生質酒精。其中,動物飼料及氮肥料為重要之限制式。於枯水條件下,水資源的可及性成為另一重要之限制式,影響收益及土地利用之分配,但系統仍能維持生質酒精之供應藉由減少產生農產品,利用本研究所建構的最佳化模式,可評估於未來酒精供應政策下對於台南地區造成之永續性影響。
Increasing scarcity of natural fossil resources drives utilization of residual biomass and energy crops to generate biofuels. However, the increasing biofuel production around the world has been attracting both positive and negative attentions.
In this study, prospective influences of a bio-ethanol promotion policy on regional sustainability are evaluated using an optimization model. Namely, the productivity of the region and the change in self-sufficiency (food, feed and nitrogen fertilizer) associated with future bio-ethanol demand is analyzed assuming occurrence of changes in land use under market mechanisms, considering competition over productive land and water supply. Bio-ethanol demand in the future is met by: 1) using unutilized feedstock, e.g. agricultural residue, 2) preparing more land for crops that provide feedstock for ethanol production, and 3) increasing productivity of land e.g. by using high biomass yielding cultivars. All the three approaches induce changes in regional land use and water consumption. To determine the land use as design variables, the model uses supply and demand relationship with respect to energy, food, feed, and nitrogen fertilizer, with an objective of profit maximization. Use of this model is demonstrated with a case study on Taiwanese national policy on promotion of bio-ethanol with focus on a region in the south of Taiwan, that provide both food and income from high-tech industries for the nation, as well as houses for population of 1.87 million.
The result indicated that the prospective E10 (i.e., hybrid fuel with gasoline 90%, anhydrous ethanol 10% by volume) demand in 2025 is met maintaining the four regional self-sufficiency rates (SSRs) at above 1.0, but the use of agricultural residue and the use of fallow land are necessary. The shifts of land use from food production to combined food and fuel production or even to fuel production only are observed. This shift occurs in different patterns under abundant water supply and drought conditions over varied bioethanol production. The feed and nitrogen fertilizer SSRs are the key constraints. Under drought condition, water availability emerges as another important constraint affecting the income and thus the allocation of land use: as a result the region maintains ethanol supply by reducing food production.
Agency for Natural Resources and Energy, Japan. (2008). Energy Annual Report.
Agriculture and Food Agency, Council of Agriculture. (2009). 農產品生產成本調查資訊 Retrieved from http://agrcost.afa.gov.tw:9000/agrcost/yearreport/index-report.html.
Badger, P. C. (2002). Ethanol from cellulose: A general review. Paper presented at the Trends in New Crops and New Uses (p.17-21).
Bureau of Energy, Ministry of Economic Affairs. Monthly report of energy statistic. Retrieved from http://www.moeaboe.gov.tw/opengovinfo/Plan/all/WorkStatisticsAll.aspx.
Bureau of Energy, Ministry of Economic Affairs. Sustainable Development of Renewable Energy- III. Biomass Energy. Retrieved from http://www.moeaboe.gov.tw/About/webpage/book_en1/page3.htm.
Bureau of Energy, Ministry of Economic Affairs. (2009a). Energy Statistic Yearbook- Energy Balance Sheet Retrieved from http://www.moeaboe.gov.tw/opengovinfo/Plan/all/energy_year/main/EnergyYearMain.aspx?PageId=default.
Bureau of Energy, Ministry of Economic Affairs. (2009b). Energy Statistic yearbook- energy supply and consumption and energy supply (Indigenous & Imported). Retrieved from http://www.moeaboe.gov.tw/opengovinfo/Plan/all/energy_year/main/EnergyYearMain.aspx?PageId=default.
Bureau of Energy, Ministry of Economic Affairs. (2009c). Energy Statistic yearbook-Energy Supply and Demand Situation of Taiwan in 2009. Retrieved from http://www.moeaboe.gov.tw/opengovinfo/Plan/all/energy_year/main/EnergyYearMain.aspx?PageId=default.
Bureau of Energy, Ministry of Economic Affairs. (2009d). Energy Statistic Yearbook - Structure of Energy Supply and Total Domestic Consumption (by Sector). Retrieved from http://www.moeaboe.gov.tw/opengovinfo/Plan/all/energy_year/main/EnergyYearMain.aspx?PageId=default.
Bureau of Energy, Ministry of Economic Affairs. (2010). 2010年能源產業技術白皮書.
Central Weather Bureau. (2011). 南區雨量統計. Retrieved from http://south.cwb.gov.tw/index1.php?web=531&web_title=%E5%8D%97%E9%83%A8%E5%9C%B0%E5%8D%80%E8%BF%9130%E5%B9%B4%E6%AF%8F%E5%B9%B4%E7%B8%BD%E9%9B%A8%E9%87%8F%E6%AF%94%E8%BC%83#w531.
Council of Agriculture, Executive Yuan. (2005). Taiwan agriculture encyclopedia 貳‧糧食作物,十五‧樹薯.
Council of Agriculture, Executive Yuan. (2009a). 97年農業統計年報 (Agricultural Statistic Yearbook 2008). Retrieved from http://www.coa.gov.tw/view.php?catid=19669.
Council of Agriculture, Executive Yuan. (2009b). 中華民國糧食供需年報 (Food supply and utilization yearbook). Retrieved from http://www.coa.gov.tw/view.php?catid=22117.
Council of Agriculture, Executive Yuan. (2010). 98年農業統計年報 (Agricultural Statistic Yearbook 2009).
Deaparment of Agriculture, Tainan County Government. (2010). 31鄉鎮市主要農產品. from http://web1.tainan.gov.tw/agr/CP/11400/wholeyear.aspx
Fischer, G., Prieler, S., van Velthuizen, H., Berndes, G., Faaij, A., Londo, M., et al. (2010). Biofuel production potentials in Europe: Sustainable use of cultivated land and pastures, Part II: Land use scenarios. Biomass and Bioenergy, 34(2), 173-187.
Food and Drug Administration, Department of Health, Executive Yuan. (2002). 國人膳食營養素參考攝取量. Retrieved from http://www.fda.gov.tw/content.aspx?site_content_sn=285.
Food and Drug Administration, Department of Health, Executive Yuan. (2010). 台灣地區食品營養成分資料庫. from http://www.doh.gov.tw/FoodAnalysis/
Günther Fischer, Eva Hizsnyik, Sylvia Prieler, & Harrij van Velthuizen. (2007). Assessment of biomass potentials for biofuel feedstock production in Europe: Methodology and results. Report of refuel subtask work package 2, from http://www.refuel.eu/fileadmin/refuel/user/docs/Refuel-D6-Jul2007-final6.pdf
García, C. A., Fuentes, A., Hennecke, A., Riegelhaupt, E., Manzini, F., & Masera, O. (2011). Life-cycle greenhouse gas emissions and energy balances of sugarcane ethanol production in Mexico. Applied Energy, 88(6), 2088-2097.
Hung Chun Lin. (2011). Comparisons of organic and conventional rice production with dual cropping system. National Cheng Kung University, Tainan.
Investopedia. Compound Annual Growth Rate - CAGR. Retrieved May 22, 2011, from http://www.investopedia.com/terms/c/cagr.asp
Koopmans, A., & Koppejan, J. (6-10 January 1997). Agricultural and forest residues - generation, utilization and availability. Paper presented at the Regional Consultation on Modern Applications of Biomass Energy. Retrieved from http://wgbis.ces.iisc.ernet.in/energy/HC270799/RWEDP/acrobat/p_residues.pdf
Lal, R., & Pimentel, D. (2007). Biofuels from crop residues. Soil and Tillage Research, 93(2), 237-238.
Lee R. Lynd, Haiming Jin, Joseph G. Michels, Charles E. Wyman, & Dale, B. (2006). Bioenergy: Background, Potential, and Policy- A policy briefing prepared for the Centre for Strategic and International Studies.
Leemans, R., van Amstel, A., Battjes, C., Kreileman, E., & Toet, S. (1996). The land cover and carbon cycle consequences of large-scale utilizations of biomass as an energy source. [doi: DOI: 10.1016/S0959-3780(96)00028-3]. Global Environmental Change, 6(4), 335-357.
Luo, L., van der Voet, E., & Huppes, G. (2009). An energy analysis of ethanol from cellulosic feedstock-Corn stover. Renewable and Sustainable Energy Reviews, 13(8), 2003-2011.
Macedo. (2008). Green house gases emissions in the production and use of ethanol from sugarcane in Brazil: The 2005/2006 averages and a prediction for 2020. Biomass and Bioenergy, 32, 582-595.
Ministry of Agriculture, Forestry and Fisheries of Japan. (2009). The supply and demand table at 2006. Retrieved from http://www.maff.go.jp/i/zyukyu/zikyu%20ritu/pdf/ws.pdf.
Ministry of transportation and communications R.O.C. (2011). Number of Registrated Motor Vehicles. Retrieved from http://www.motc.gov.tw/mocwebGIP/wSite/lp?ctNode=162&CtUnit=94&BaseDSD=16&mp=1.
Nguyen, T. L. T., Gheewala, S. H., & Garivait, S. (2007). Full Chain Energy Analysis of Fuel Ethanol from Cassava in Thailand. Environmental Science & Technology, 41(11), 4135-4142.
Nobuyuki Tsuji, & Toshiki Sato. (2011). Analysis of energy, food, fertiliser and feed: Self-sufficiency potentials of Furano City, Hokkaido, Japan. In A. K. B. Mitsuru Osaki, Ken'ichi Nakagami (Ed.), Designing Our Future: Perspectives on Bioproduction, Ecosystems, and Humanity (pp. 425): United Nations University Press.
Patzek, T. W., & Pimentel, D. (2006). Thermodynamics of Energy Production from Biomass. Critical Reviews in Plant Sciences, 24(5-6).
Renner, D. E. Supply and Demand: The Market Mechanism. Retrieved May 06, 2011, 2011, from http://krypton.mnsu.edu/~renner/supdem.htm
Satoshi OHARA, Yasuhiro FUKUSHIMA, Akira SUGIMOTO, Yoshifumi TERAJIMA, Tetsuya ISHIDA, & SAKODA, A. (2009). Reduction in Greenhouse Gas Emiisions from Process Retrofitting and Cultivar Improvement in Combined Sugar-Ethanol Production from Sugarcane. Journal of Life Cycle Assessment, Japan, 5(4), 8.
Shih-Ping Chen. (2008). Greenhouse Gas Emissions Induced by Ethanol Fuel Produced from Sugarcane in Taiwan. National Cheng Kung University, Tainan.
Smil, V. (1999). Crop Residues: Agriculture's Largest Harvest. Bio Science, 49(4), 10.
Somerville, C. (2006). The Billion-Ton Biofuels Vision. Science, 312(5778), 1277.
Tainan City Government. (2010). 98年統計要覽. Retrieved from http://www2.tncg.gov.tw/Statistics.asp?nsub=G1A300.
Tainan County Government. (2010). 98年統計要覽.
Taiwan Fertilizer Corporation. Fertilizer products. 2011, from http://www.taifer.com.tw/
Taiwan Sugar Corporation. (2010a). 台糖公司南靖糖廠增設生質酒精工廠投資計畫環境影響說明書.
Taiwan Sugar Corporation. (2010b). 台糖年報 (Taiwan Sugar Corporation Yearbook). Retrieved from http://www.taisugar.com.tw/chinese/CP.aspx?s=376&n=10481.
Texas Comptroller of Public Accounts. (2008). The Energy Report - Chapter 13 Ethanol. from http://www.window.state.tx.us/specialrpt/energy/renewable/ethanol.php#exhibit13-5
Ting-Ting Kuo. (2011). Income of napier grass production. In 成游貴博士 (Ed.). Tainan.
Ting-Ting Kuo, & Yasuhiro FUKUSHIMA. (2009). Support tools for LCA of Starch-derived products- LCA of starch derived from cassava. National Cheng Kung University, Tainan.
Ting Ting KUO, & Yasuhiro FUKUSHIMA. (2010). Biomass utilization toward Sustainability: A case study –GHG emissions from cassava derived starch and ethanol. Paper presented at the 5th iLCAj
United States Department of Agriculture (USDA). (2006). Crop residue removal for biomass production: effects on soils and recommendations. Retrieved from http://soils.usda.gov/sqi/management/files/sq_atn_19.pdf.
Water Resources Agency, Ministry of Economic Affairs. (2011). Consuming water statistics Database - 農業用水統計 灌溉面積與用水量查詢. Retrieved from http://wuss.wra.gov.tw/.
Zhang, C., Han, W., Jing, X., Pu, G., & Wang, C. (2003). Life cycle economic analysis of fuel ethanol derived from cassava in southwest China. Renewable and Sustainable Energy Reviews, 7(4), 353-366.
台南區農業改良場. (2007a). 胡蘿蔔良好農業規範(TGAP).
台南區農業改良場. (2007b). 甜玉米良好農業規範(TGAP).
成游貴. (2010a). 全年性優質青貯料 穩定供應模式建立. Retrieved April 15, 2011, from http://lifeexplorer.pixnet.net/blog/post/30367284
成游貴. (2010b). 狼尾草. Retrieved April, 15,2011, from http://lifeexplorer.pixnet.net/blog/post/30179852
侯金日 副教授 國立嘉義大學農藝學系. 有機甘藷栽培. Retrieved May 20, 2011, 2011, from http://openinfo.npust.edu.tw/agriculture/npus12/m17/017/017%20%E4%BD%9C%E7%89%A9%E6%9C%89%E6%A9%9F%E6%A0%BD%E5%9F%B9--003.pdf
苗栗區農業改良場. (2007). 甘藷良好農業規範(TGAP).
張惠敏. 嘉南大圳之父-八田與一 認識台灣入口網 Retrieved June 6, 2011, 2011, from http://dic.nict.gov.tw/~Taiwan_series/101/15-1.pdf
梁啟源, & 鄭睿合. (2010). 我國推動生質酒精發戰之長期政策及策略.
陳劍霞. (2011, Feb 14, 2011). 農業局加強活化休耕農田. 中華日報. Retrieved from http://www.cdns.com.tw/20110215/news/ncxw/U91002002011021419143072.htm
董啟功. (2007). 台灣生質酒精展望: 中央研究院南部生物技術計畫中心.
農糧署農業試驗所. (2007). 稻米良好農業規範 (TGAP).
廖春梅. (2010). 生質酒精之經濟效益分析: 台灣銀行季刊第六十一卷第二期.
蔡養正. (1994). 雜糧作物各論 III.根及莖類 第19章 樹薯. In 蔡文福 (Ed.), 雜糧作物各論 (pp. 1541-1663): 財團法人台灣區雜糧發展基金會.
鄭作林, & 蕭耀基. (2006). 台糖公司在生質酒精的發展策略. Retrieved from http://energymonthly.tier.org.tw/outdatecontent.asp?ReportIssue=9504&Page=11.