| 研究生: |
楊岳達 Yang, Yueh-Ta |
|---|---|
| 論文名稱: |
未飽和層一維入滲解析之研究 The Study of One-Dimensional Infiltration in Unsaturated Soils |
| 指導教授: |
李振誥
Lee, Cheng-Haw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 數值模式 、解析模式 、入滲 、未飽和層 |
| 外文關鍵詞: | infiltration, numerical solution, unsaturated zone, analytical solution |
| 相關次數: | 點閱:186 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要目的在比較Srivastava and Yeh、Babajimopoulos及陳建謀之三種未飽和層一維入滲理論模式之適用性,同時選定一試驗場址,收集其現地相關資料,並且進行現地及室內試驗以求取理論模式所需之土壤特性參數,代入適合理論模式中,配合敏感度分析結果及現場毛細壓力觀測資料進行現場參數模式率定,以作為往後預測試驗場址土壤入滲行為及相關研究之依據。
於試驗場址進行現地及室內試驗,並長期觀測地下水位、土壤毛細壓力及體積含水量變化,搭配日降雨量資料,以求取理論模式所需參數,其中包括飽和透水係數、土壤孔隙分佈參數、地下水位深度、初始入滲率、時間大於零之入滲率、飽和含水量、殘餘含水量。將所得之參數進行敏感度分析,發現飽和透水係數、土壤孔隙分佈參數、地下水位深度、初始入滲率、時間大於零之入滲率對理論模式影響最為顯著,飽和含水量及殘餘含水量對理論模式影響較小。
模式比較部分,Srivastava and Yeh所推導之解析模式及Babajimopoulos所提出之數值模式,其模擬之初始土壤剖面可依現場土壤狀況進行調整,而陳建謀所提出之解析模式,其模擬之初始土壤剖面為地表為殘餘含水量時所形成之穩態剖面,其理論模式模擬之初始土壤剖面無法依照現場土壤狀況調整,因此若模擬事件之入滲率為定值且未產生積水時,Babajimopoulos之理論模式適用性最廣,Srivastava and Yeh之理論模式次之,陳建謀之理論模式較差。而三種理論模式中,僅陳建謀之理論模式考慮積水狀況且其入滲率可為時間之函數,因此若模擬事件發生積水現象或其入滲率為時間函數時,則僅陳建謀之理論模式適用。
利用Srivastava and Yeh及Babajimopoulos之理論模式配合現場毛細壓力觀測值進行現場參數模式之率定,率定所得參數為飽和透水係數為0.30 、土壤孔隙分佈參數為0.0032 、飽和含水量為0.4、殘餘含水量為0.138,將此參數進行預測驗證,發現在模擬出現場之初始土壤剖面後,兩種理論模式之模擬結果其趨勢與現地觀測資料之趨勢符合。
Three models of one-dimensional transient infiltration, the Srivastava and Yeh model, the Babajimoupos model, and Chen model, were provided to analyze in-situ hydraulic data of unsaturated soils in NCKU-RE study site in order to find the most appropriate model and calibrate the effective parameters. Several hydraulic parameters of soil grain size, saturated hydraulic conductivity, soil pore-size distribution parameter, related volumetric water content, daily rainfall data, water-table altitude, saturated water content, and residual water content were investigated in field observation and lab experiment. In the case of field observations systems, soil pressure head and soil volumetric water content were set up to collect the series data in different depths from ground surface in study site. Then we do sensitivity analysis of the parameters of model. The results of sensitivity analysis showed that the effect of saturated hydraulic conductivity, soil pore-size distribution parameter, water-table altitude, initial flux, and prescribed flux for time which is greater than zero were more significant while saturated and residual water contents were less significant.
As compared sensitivity results of three models, it indicated that the Srivastava and Yeh model and Babajimpoulos model are comparable under the similarly initial in-situ soil condition. In the case that infiltration rate is constant and without ponding, the Babajimpoulos model is the most predictive model. But in the case that infiltration rate is a function of time or the ponding is occurred, Chen model is the most appropriate model.
In NCKU-RE study site, we used Srivastava and Yeh model and Babajimpoulos model to calibrate field data, results indicated that the value of saturated hydraulic conductivity is 0.30 , soil pore-size distribution parameter is 0.0032 , saturated water content is 0.4 and residual water content is 0.138. Meanwhile, these two models can use to simulate the trend of pressure head in terms of depth in site observations.
1.Babajimopoulos, C., “A douglas-jones predictor-corrector program for simulating one-dimensional unsaturated flow in soil”, Ground Water, vol.29, no.2, pp.267-270, 1991.
2.Belmans, C., J. G. Wesseling, and R. A. Feddes, "Simulation model of the water balance of a cropped soil”, SWATRE. J.of Hydrology, vol.63, pp.271-286, 1983.
3.Beverly, C. R., J. T. Croton, ”Formulation and application of the unsaturated/saturated catchment models”, Hydrologic Processes, vol.16, no.12, pp.2369-2394, 2002.
4.Brandt, A., E. Bresler, N. Diner, I. Ben-Asher, J. Heller, and D. Goldberg, ”Infiltration from a trickle source:i. mathematical models”, Soil Sci. Soc. Amer. Proc., vol.35, pp.675-682, 1971.
5.Buckingham, E., ”Studies on the movement of soil moisture”, Bull.38.U.S.Dept.of Agr.Bureau of Soils, Washington,D.C., 1907.
6.Carsel, R. F. and R. S. Parrish, “Developing joint probability distribution of soil water retention characteristics”, Water Resources Research , vol.24, no.5, pp.755-769, 1988.
7.Celia, M. A. and E. T. Bouloutas, “A general mass-conservative numerical solution for the unsaturated flow equation”, Water Resources Research, vol.26, no.7, pp.1483-1496, 1990.
8.Chen, J. M., Y. C. Tan, and C. H. Chen, “Analytical solutions of one-dimensional infiltration before and after ponding”, Hydrological Processes, vol.17, pp.815-822, 2003.
9.Elrick, D. E., W. D. Reynolds, and K. A. TAN, “Hydraulic conductivity measurements in the unsaturated zone using improved well analyses”, Ground Water Monitoring Review, vol.9, pp.184-193, 1989.
10.Elrick, D. E., W. D. Reynolds, H. R. Geering, and K. A. Tan, “Estimating steady infiltration rate times for infiltrameters and permeameters”, Water Resources Research, vol.26, no.4, pp.759-769, 1990.
11.Gardner, W. R., “Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table”, Soil Sci., vol.85, no.4, pp.228-232, 1958.
12.Hook, W. R., N. J. Livingston, ”Errors in converting time domain reflectometry measurements of propagation velocity to estimates of soil water content”, Soil Sci. Soc. Am. J., vol.60, no.1, 1996.
13.Jennings, A. A. “Bioremediation course module prototype based on BIO1D”, Case Western Reserve University, Cleveland, Ohio, 1995.
14.Lin, H. C., D. R. Richards, G. T. Yeh, J. R. Cheng, H. P. Cheng, N. L. Jones, “FEMWATER: a three-dimensional finite element computer model for simulating density dependent flow and transport”, Technical Report, HL-96.
15.Philip, J. R., ”Steady infiltration from buried point sources and spherical cavities”, Water Resources Research, 4, pp.1039-1047, 1968.
16.Pruess, K., C. M. Oldenburg, and G. Moridis, “TOUGH2 user’s guide version 2.0”, Lawrence Berkeley National Laboratory Report LBNL 43134, November 1999.
17.Pullan, A. J., “The quasilinear approximation for unsaturated porous media flow”, Water Resources Research, vol.26, no.6, pp.1219-1234, 1990.
18.Richards, L. A., ”Capillary conduction of liquids through porous medium”, Physics, 1, pp.318-333, 1931.
19.Romano, N., B. Brunone, A. Satini, ”Numerical analysis of one-dimensional unsaturated flow in layered soils”, Advances in Water Resources, vol.21, no.4, pp.315-324, 1998.
20.Simunek, J., M. Sejna, M. Th. van Genuchten, “The HYDRUS-1D software package for simulating the one-dimensional movement of water,heat,and multiple solutes in variably-saturated media.version 2.0”, IGWMCTPS-70.International Ground Water Modeling Center, Colorado School of Mines, Golden, Colorado, pp.202, 1998.
21.Simunek, J., M. Sejna, M. Th. Van Genuchten, “The HYDRUS-2D software package for simulating the two-dimensional movement of water,heat,andmultiple solutes in variably-saturated media.version 2.0”, IGWMCTPS-53.International Ground Water Modeling Center, Colorado School of Mines, Golden, Colorado, pp.251, 1999.
22.Srinilta, S., D. R. Nielsen, and D. Kirkham, ”Steady flow of water through a two-layer soil”, Water Resources Research, vol.5, no.5, 1969.
23.Srivastava, R., and T. –C. J. Yeh,” Analytical solutions for one-dimensional,transient infiltration toward the water table in homogeneous and layered soils”, Water Resources Research, vol.27, no.5, pp.753-762, 1991.
24.Takagi, S. “Analysis of the vertical downward flow of water through a two-layered soil”, Soil Sci., vol.90, pp.98-103, 1960.
25.Voss, C. I., “A finite-element simulation model for saturated-unsaturated.Fluid-density-dependent groundwater flow with energy transport of chemically-reactive single-species solute transport”, U.S.G.S. Water Resources Investigations Report, pp.84-4369, 1984.
26.Xie, Z. H., Y. J. Dai, Q. C. Zeng, ”An unsaturated soil water flow problem and its numerical simulation”, Advances in Atmospheric Sciences, vol.16, no.2, pp.183-196, 1999.
27.Yeh, T. -C, J., L. W. Gelhar, and A. L. Gutjahr, ”Stochastic analysis of unsaturated flow in heterogeneous soils, 1, statistically isotropic media”, Water Resources Research, vol.21, no.4, pp.447-456, 1985a.
28.Yeh, T. -C, J., L. W. Gelhar, and A. L. Gutjahr, ”Stochastic analysis of unsaturated flow in heterogeneous soils, 2, statistically anitropic media with variable ”, Water Resources Research, vol.21, no.4, pp.457-464, 1985b.
29.Yeh, T. –C. J., L. W. Gelhar, and A. L. Gutjahr, ”Stochastic analysis of unsaturated flow in heterogeneous soils, 3,observations and applications”, Water Resources Research, vol.21, no.4, pp.465-472, 1985c.
30.Yeh, T. –C. J.,” One-dimensional steady state infiltration in heterogeneous soils”, Water Resources Research, vol.25, no.10, pp.2149-2158, 1989.
31.Yeh, Y. J., C. H. Lee, and S. T. Chen, “A tracer method to determine hydraulic conductivity and effective porosity of saturated clays under low gradients”, Ground Water, vol.38, no.4, pp.522-529, 2000.
32.Zaslavsky, D., ”Theory of unsaturated flow into a non-uniform soil profile”, Soil Sci., 97, pp.400-410, 1964.
33.李振誥、周業泗、陳榮華、葉義章,”未飽和與飽和層溶質傳輸行為之研究;以蘭嶼地區為例”,礦冶,中國礦冶工程學會會刊,第44卷,第2期,140-147頁,2000。
34.李振誥、余進利、陳志忠、陳榮華,”彰化地區淺層地表入滲行為之研究”,台灣水利,第46卷,第2期,12-22頁,1998。
35.陳進發、李振誥,”Analysis for water infiltration in unsaturated zone based on water budget model”,第十二屆水利工程研討會,成功大學,7月,pp.Q63-Q70,2001。
36.陳冠志、徐國錦、李振誥,”異質性土壤中二相流及溶質傳輸之研究”,第十二屆水利工程研討會,pp.Q33-Q40,2001。
37.許瑞昌、陳主惠、劉振宇,”未飽和層土壤水分垂直入滲之數值模擬”,農業工程學報,第44卷,第4期,1-16頁,1999。
38.黃柏清、李振誥、陳冠志,”探討異質性土壤飽和及未飽和地層傳輸行為之影響”,礦冶,中國礦冶工程學會會刊。
39.黃誌川,”未飽和層土壤水份移動行為之研究”,國立台灣大學地理學研究所碩士論文,1999。
40.羅子立,”非飽和土壤一維流場問題之半解析解”,中原大學土木工程研究所碩士論文,1995。