簡易檢索 / 詳目顯示

研究生: 許涵茵
Hsu, Han-Yin
論文名稱: 肺泡表面蛋白質D在慢性阻塞性肺病角色之探討
The role of surfactant protein D in chronic obstructive pulmonary disease
指導教授: 王志堯
Wang, Jiu-Yao
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 66
中文關鍵詞: 慢性阻塞性肺病臭氧肺泡表面蛋白質D
外文關鍵詞: chronic obstructive pulmonary disease, ozone, surfactant protein D
相關次數: 點閱:71下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 慢性阻塞性肺病 (chronic obstructive pulmonary disease, COPD) 是一種呼吸氣流受限疾病,主要包括慢性支氣管炎和肺氣腫 (emphysema) 兩種病況,由於長期吸菸或空氣汙染,導致肺部產生過多的氧化壓力,造成呼吸道持續發炎,活化多種蛋白酶,使肺泡細胞被破壞、失去彈性,呼進的空氣滯留於肺部,產生肺氣腫。COPD的罹患率和死亡率在全世界都逐年增加,但到目前還沒有有效的藥物來阻止COPD患者肺功能的漸進性惡化。肺泡表面蛋白質D (surfactant protein D, SP-D),由肺泡第二型上皮細胞所分泌,屬於C型凝集素 (C-type lectin) 之一,為肺部重要的先天性免疫調節蛋白,先前的文獻顯示,COPD患者血清SP-D含量較健康者多,且在小鼠的調查中也發現,SP-D基因缺陷的小鼠具有肺氣腫的現象。由於SP-D在其中的機制尚不清楚,因此本研究目的為探討SP-D在COPD中的功能及作用機轉。臭氧 (ozone) 為環境中的污染物,當濃度過高時會造成肺部發炎,導致肺氣腫,因此我們利用臭氧來誘導小鼠產生COPD,在這個動物模式中,我們發現臭氧暴露的小鼠比起控制組,具有較差的肺功能,病理切片圖也看到了肺氣腫的現象,增加肺部免疫細胞浸潤並且產生許多發炎細胞激素。接著為了調查SP-D在慢性阻塞性肺病中的機制,我們利用SP-D基因剔除的小鼠暴露於臭氧進行調查,結果發現在未給予臭氧時SP-D基因剔除小鼠比起野生型小鼠,具有較差的肺功能及較多的免疫細胞浸潤到肺部中,而暴露於臭氧後,則產生更嚴重的發炎反應、肺部增加更多的嗜中性白血球 (neutrophil) 浸潤,說明了SP-D在COPD中可能扮演著保護的角色。為了調查SP-D的保護機制,我們利用細胞株給予過氧化氫 (hydrogen peroxide, H2O2) 來誘導產生氧化壓力,發現預給天然的SP-D可以使肺泡上皮細胞 (A549) 增加NF-E2相關因子2 (nuclear factor erythroid-2-related factor, Nrf2)的表現,可以降低活性氧化物質 (reactive oxygen species, ROS) 的產生,也可以減少肺上皮細胞的細胞凋亡現象。且在臭氧暴露小鼠模式中給予天然SP-D可以恢復老鼠的肺功能,減少氣管的發炎現象、降低免疫細胞的浸潤以及增加Nrf2的表現。綜合以上結果得知,SP-D可藉由增加Nrf2表現來抑制ROS,減少肺泡上皮細胞凋亡來改善COPD的症狀,故SP-D有可能在未來成為治療COPD的新藥物。

    Chronic obstructive pulmonary disease (COPD) is a lung disease characterized by chronic obstruction of lung airflow that interferes with normal breathing and is associated with chronic bronchitis and emphysema. The common risk factors for the development of COPD are cigarettes smoking and oxidant air pollution. Surfactant protein D (SP-D) is known to play an important role in innate immunity of lung. Previous research has demonstrated that serum SP-D level is increased in COPD patients as compared with healthy people. In addition, mice with SP-D deficiency exhibit pathological characteristic of bronchitis and emphysema. However, the role and function of SP-D in COPD remain unclear. Therefore, this study is aimed to investigate the role of SP-D in COPD. We have established the ozone-induced mice model of COPD. Ozone is an environmental pollutant that stimulates airways and induces neutrophilic lung inflammation. In this mouse model, we found that SP-D deficient mice exposed to ozone for three weeks, have poorer lung function and increased number of macrophages and neutrophils infiltration in the airways as compared with those of wild type group. These results suggested that SP-D may play a protective role in the development of ozone-induced mice model of COPD. We also found that pre-treatment with native SP-D in hydrogen peroxide (H2O2)-stimulated human epithelial cell line inhibited the production of reactive oxygen species (ROS) and epithelial cell apoptosis. Further results also showed that intra-tracheal administration of exogenous SP-D in our established mice model of COPD, improved lung function, decreased number of inflammatory cells infiltration in the airways, reduced the production of inflammatory cytokines and increased the Nrf2 expression in lung. In conclusion, our results indicate that SP-D may play a protective role in ROS inhibition and decrease cell apoptosis via increased the Nrf2 protein to alleviate the symptoms of COPD, which may have clinical implication for this chronic lung diseases.

    中文摘要 I 英文摘要 III 誌謝 IX 目錄 X 圖目錄 XII 縮寫檢索表 XIV 序論 一、 慢性阻塞性肺病 1 二、 慢性阻塞性肺病的致病機轉 2 三、 肺泡表面蛋白質D 4 四、 肺泡表面蛋白質D的作用機轉 4 五、 肺泡表面蛋白質D與慢性阻塞性肺病的關聯性 6 六、 研究方向 7 材料與方法 一、 實驗材料 8 二、 實驗方法 12 1. 利用臭氧建立慢性阻塞性肺病動物模式 12 2. 肺泡表面蛋白質D治療慢性阻塞性肺病小鼠的模式 13 3. 呼吸系統功能測量 13 4. 血清分離與保存 14 5. 肺沖洗液的收集 14 6. 白血球細胞區別染色 14 7. 組織固定與染色 15 8. 細胞激素及SP-D定量 15 9. 蛋白質定量 16 10. 由羊水中純化SP-D 16 11. 西方墨點法 17 12. 細胞內ROS測定 19 13. 細胞凋亡分析 19 14. 免疫組織化學染色法 19 15. 統計分析 20 結果 一、 在BALB/c與C57BL6J小鼠上建立慢性阻塞性肺病的動物模式 21 二、 探討慢性阻塞性肺病的機制 22 三、 分析SP-D基因剔除對於慢性阻塞性肺病小鼠的影響 24 四、 經由羊水純化出天然的SP-D探討其中機制 27 五、 給予天然的SP-D對於慢性阻塞性肺病小鼠的影響 28 討論 31 參考文獻 37 圖表 47

    Akiyama, J., A. Hoffman, C. Brown, L. Allen, J. Edmondson, et al. (2002). Tissue distribution of surfactant proteins A and D in the mouse. J Histochem Cytochem 50(7):993-6.

    Antunes, M. A., and P. R. Rocco. (2011). Elastase-induced pulmonary emphysema: insights from experimental models. An Acad Bras Cienc 83(4):1385-96.

    Atochina-Vasserman, E. N. (2012). S-nitrosylation of surfactant protein D as a modulator of pulmonary inflammation. Biochim Biophys Acta 1820(6):763-9.

    Barnes, P. J. (2008). The cytokine network in asthma and chronic obstructive pulmonary disease. J Clin Invest 118(11):3546-56.

    Barnes, P. J. (2016). Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol 138(1):16-27.

    Bartalesi, B., E. Cavarra, S. Fineschi, M. Lucattelli, B. Lunghi, et al. (2005). Different lung responses to cigarette smoke in two strains of mice sensitive to oxidants. Eur Respir J 25(1):15-22.

    Beharka, A. A., C. D. Gaynor, B. K. Kang, D. R. Voelker, F. X. McCormack, et al. (2002). Pulmonary Surfactant Protein A Up-Regulates Activity of the Mannose Receptor, a Pattern Recognition Receptor Expressed on Human Macrophages. The Journal of Immunology 169(7):3565-3573.

    Belvisi, M. G., D. J. Hele, and M. A. Birrell. (2004). New anti-inflammatory therapies and targets for asthma and chronic obstructive pulmonary disease. Expert Opin Ther Targets 8(4):265-85.

    Betsuyaku, T., Y. Kuroki, K. Nagai, Y. Nasuhara, and M. Nishimura. (2004). Effects of ageing and smoking on SP-A and SP-D levels in bronchoalveolar lavage fluid. Eur Respir J 24(6):964-70.
    Botas, C., F. Poulain, J. Akiyama, C. Brown, L. Allen, et al. (1998). Altered surfactant homeostasis and alveolar type II cell morphology in mice lacking surfactant protein D. Proc Natl Acad Sci U S A 95(20):11869-74.

    Brazil, T. J., M. P. Dagleish, B. C. McGorum, P. M. Dixon, C. Haslett, et al. (2005). Kinetics of pulmonary neutrophil recruitment and clearance in a natural and spontaneously resolving model of airway inflammation. Clin Exp Allergy 35(7):854-65.

    Bridges, J. P., H. W. Davis, M. Damodarasamy, Y. Kuroki, G. Howles, et al. (2000). Pulmonary surfactant proteins A and D are potent endogenous inhibitors of lipid peroxidation and oxidative cellular injury. J Biol Chem 275(49):38848-55.

    Brinker, K. G., E. Martin, P. Borron, E. Mostaghel, C. Doyle, et al. (2001). Surfactant protein D enhances bacterial antigen presentation by bone marrow-derived dendritic cells. Am J Physiol Lung Cell Mol Physiol 281(6):L1453-63.

    Celli, B. R., N. Locantore, J. Yates, R. Tal-Singer, B. E. Miller, et al. (2012). Inflammatory biomarkers improve clinical prediction of mortality in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 185(10):1065-72.

    Chang, C. L., S. C. Robinson, G. D. Mills, G. D. Sullivan, N. C. Karalus, et al. (2011). Biochemical markers of cardiac dysfunction predict mortality in acute exacerbations of COPD. Thorax 66(9):764-8.

    Chen, X. L., G. Dodd, S. Thomas, X. Zhang, M. A. Wasserman, et al. (2006). Activation of Nrf2/ARE pathway protects endothelial cells from oxidant injury and inhibits inflammatory gene expression. Am J Physiol Heart Circ Physiol 290(5):H1862-70.

    Chung, K. F., and I. M. Adcock. (2008). Multifaceted mechanisms in COPD: inflammation, immunity, and tissue repair and destruction. Eur Respir J 31(6):1334-56.

    Churg, A., S. Zhou, and J. L. Wright. (2012). Matrix metalloproteinases in COPD. Eur Respir J 39(1):197-209.

    Clark, H., N. Palaniyar, P. Strong, J. Edmondson, S. Hawgood, et al. (2002). Surfactant Protein D Reduces Alveolar Macrophage Apoptosis In Vivo. The Journal of Immunology 169(6):2892-2899.
    Craig, M. , N. Limjunyawong, L. Scott, and W. Mitzner. (2015). A comparative analysis of balbc and c57bl6 mice reveals a critical role for Il-17a in dictating strain-specific severity of emphysema. Am J Respir Crit Care Med 191:5563.

    Davies, K. J., M. E. Delsignore, and S. W. Lin. (1987). Protein damage and degradation by oxygen radicals. II. Modification of amino acids. J Biol Chem 262(20):9902-7.

    Degterev, A., M. Boyce, and J. Yuan. (2003). A decade of caspases. Oncogene 22(53):8543-67.

    Demedts, I. K., T. Demoor, K. R. Bracke, G. F. Joos, and G. G. Brusselle. (2006). Role of apoptosis in the pathogenesis of COPD and pulmonary emphysema. Respir Res 7:53.

    Dupont, A., S. Dury, V. Gafa, F. Lebargy, G. Deslee, et al. (2013). Impairment of neutrophil reactivity to elastin peptides in COPD. Thorax 68(5):421-8.

    Durga, M., S. Nathiya, A. Rajasekar, and T. Devasena. (2014). Effects of ultrafine petrol exhaust particles on cytotoxicity, oxidative stress generation, DNA damage and inflammation in human A549 lung cells and murine RAW 264.7 macrophages. Environ Toxicol Pharmacol 38(2):518-30.

    Eriksson, S. (1964). Pulmonary Emphysema and Alpha1-Antitrypsin Deficiency. Acta Med Scand 175:197-205.

    Gao, W., L. Li, Y. Wang, S. Zhang, I. M. Adcock, et al. (2015). Bronchial epithelial cells: The key effector cells in the pathogenesis of chronic obstructive pulmonary disease? Respirology 20(5):722-9.

    Gardai, S., Y. Xiao, M. Dickinson, J. Nick, D. Voelker, et al. (2003). By Binding SIRP or Calreticulin/CD91, Lung Collectins Act as Dual Function Surveillance Molecules to Suppress or Enhance Inflammation. Cell 115: 13–23.

    Guerassimov, A., Y. Hoshino, Y. Takubo, A. Turcotte, M. Yamamoto, et al. (2004). The development of emphysema in cigarette smoke-exposed mice is strain dependent. Am J Respir Crit Care Med 170(9):974-80.

    Guo, C. J., E. N. Atochina-Vasserman, E. Abramova, J. P. Foley, A. Zaman, et al. (2008). S-nitrosylation of surfactant protein-D controls inflammatory function. PLoS Biol 6(11):e266.

    Hautamaki, R. D., D. K. Kobayashi, R. M. Senior, and S. D. Shapiro. (1997). Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science 277(5334):2002-4.

    Hermans, C., and A. Bernard. (1999) Lung epithelium-specific proteins: characteristics and potential applications as markers. Am J Respir Crit Care Med 159(2):646-78.

    Hirama, N., Y. Shibata, K. Otake, J. Machiya, T. Wada, et al. (2007) Increased surfactant protein-D and foamy macrophages in smoking-induced mouse emphysema. Respirology 12(2):191-201.

    Hirche, T. O., E. C. Crouch, M. Espinola, T. J. Brokelman, R. P. Mecham, et al. (2004). Neutrophil serine proteinases inactivate surfactant protein D by cleaving within a conserved subregion of the carbohydrate recognition domain. J Biol Chem 279(26):27688-98.

    Hogg, James C. (2004). Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. The Lancet 364(9435):709-721.

    Holmskov, U., S. Thiel, and J. C. Jensenius. (2003) Collections and ficolins: humoral lectins of the innate immune defense. Annu Rev Immunol 21:547-78.

    Honda, Y., H. Takahashi, Y. Kuroki, T. Akino, and S. Abe. (1996) Decreased contents of surfactant proteins A and D in BAL fluids of healthy smokers. Chest 109(4):1006-9.

    Iizuka, T., Y. Ishii, K. Itoh, T. Kiwamoto, T. Kimura, et al. (2005). Nrf2-deficient mice are highly susceptible to cigarette smoke-induced emphysema. Genes Cells 10(12):1113-25.

    Ishii, T., K. Hagiwara, K. Kamio, S. Ikeda, T. Arai, et al. (2012) Involvement of surfactant protein D in emphysema revealed by genetic association study. Eur J Hum Genet 20(2):230-5.

    Janssen, W. J., K. A. McPhillips, M. G. Dickinson, D. J. Linderman, K. Morimoto, et al. (2008). Surfactant proteins A and D suppress alveolar macrophage phagocytosis via interaction with SIRP alpha. Am J Respir Crit Care Med 178(2):158-67.

    JM., Moré, Voelker DR., Silveira LJ., Edwards MG., Chan ED., et al. (2010). Smoking reduces surfactant protein D and phospholipids in patients with and without chronic obstructive pulmonary disease. BMC Pulm Med 10:53.

    Ju, C. R., W. Liu, and R. C. Chen. (2012). Serum surfactant protein D: biomarker of chronic obstructive pulmonary disease. Dis Markers 32(5):281-7.

    Kierstein, S., F. R. Poulain, Y. Cao, M. Grous, R. Mathias, et al. (2006). Susceptibility to ozone-induced airway inflammation is associated with decreased levels of surfactant protein D. Respir Res 7:85.

    Kirkham, P. A., and P. J. Barnes. (2013) Oxidative stress in COPD. Chest 144(1):266-73.

    Kishore, U., T. J. Greenhough, P. Waters, A. K. Shrive, R. Ghai, et al. (2006). Surfactant proteins SP-A and SP-D: structure, function and receptors. Mol Immunol 43(9):1293-315.

    Knudsen, L., M. Ochs, R. Mackay, P. Townsend, R. Deb, et al. (2007). Truncated recombinant human SP-D attenuates emphysema and type II cell changes in SP-D deficient mice. Respir Res 8:70.

    Kobayashi, E. H., T. Suzuki, R. Funayama, T. Nagashima, M. Hayashi, et al. (2016). Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat Commun 7:11624.

    Korfhagen, T. R., V. Sheftelyevich, M. S. Burhans, M. D. Bruno, G. F. Ross, et al. (1998). Surfactant protein-D regulates surfactant phospholipid homeostasis in vivo. J Biol Chem 273(43):28438-43.

    Kuan, S. F., K. Rust, and E. Crouch. (1992). Interactions of surfactant protein D with bacterial lipopolysaccharides. Surfactant protein D is an Escherichia coli-binding protein in bronchoalveolar lavage. J Clin Invest 90(1):97-106.

    Leberl, M., A. Kratzer, and L. Taraseviciene-Stewart. (2013). Tobacco smoke induced COPD/emphysema in the animal model-are we all on the same page? Front Physiol 4:91.

    Leth-Larsen, R., P. Garred, H. Jensenius, J. Meschi, K. Hartshorn, et al. (2005) A Common Polymorphism in the SFTPD Gene Influences Assembly, Function, and Concentration of Surfactant Protein D. The Journal of Immunology 174(3):1532-1538.

    Li, L., RFJ. Hamilton, and A. Holian. (2000) Protection of ozone-induced lung inflammation and cell death from endotoxin prophylaxis in mice: role of HO-1. Inhalation Toxicology 12(12):1225-1238.

    Li, W., T. O. Khor, C. Xu, G. Shen, W. S. Jeong, et al. (2008). Activation of Nrf2-antioxidant signaling attenuates NFkappaB-inflammatory response and elicits apoptosis. Biochem Pharmacol 76(11):1485-9.

    Limjunyawong, N., J. M. Craig, H. A. Lagasse, A. L. Scott, and W. Mitzner. (2015). Experimental progressive emphysema in BALB/cJ mice as a model for chronic alveolar destruction in humans. Am J Physiol Lung Cell Mol Physiol 309(7):L662-76.

    Lomas, D. A., E. K. Silverman, L. D. Edwards, N. W. Locantore, B. E. Miller, et al. (2009). Serum surfactant protein D is steroid sensitive and associated with exacerbations of COPD. Eur Respir J 34(1):95-102.

    Madan, T., U. Kishore, M. Singh, P. Strong, E. M. Hussain, et al. (2001). Protective role of lung surfactant protein D in a murine model of invasive pulmonary aspergillosis. Infect Immun 69(4):2728-31.

    Madsen, J., A. Kliem, I. Tornoe, K. Skjodt, C. Koch, et al. (2000). Localization of lung surfactant protein D on mucosal surfaces in human tissues. J Immunol 164(11):5866-70.

    Malhotra, D., R. Thimmulappa, A. Navas-Acien, A. Sandford, M. Elliott, et al. (2008). Decline in NRF2-regulated antioxidants in chronic obstructive pulmonary disease lungs due to loss of its positive regulator, DJ-1. Am J Respir Crit Care Med 178(6):592-604.

    Meschi, J., E. C. Crouch, P. Skolnik, K. Yahya, U. Holmskov, et al. (2005). Surfactant protein D binds to human immunodeficiency virus (HIV) envelope protein gp120 and inhibits HIV replication. J Gen Virol 86(Pt 11):3097-107.

    Moser, B., M. Wolf, A. Walz, and P. Loetscher. (2004). Chemokines: multiple levels of leukocyte migration control. Trends Immunol 25(2):75-84.

    Niture, S. K., and A. K. Jaiswal. (2012). Nrf2 protein up-regulates antiapoptotic protein Bcl-2 and prevents cellular apoptosis. J Biol Chem 287(13):9873-86.

    Ochs, M., L. Knudsen, L. Allen, A. Stumbaugh, S. Levitt, et al. (2004). GM-CSF mediates alveolar epithelial type II cell changes, but not emphysema-like pathology, in SP-D-deficient mice. Am J Physiol Lung Cell Mol Physiol 287(6):L1333-41.

    Papi, A., C. M. Bellettato, F. Braccioni, M. Romagnoli, P. Casolari, et al. (2006). Infections and airway inflammation in chronic obstructive pulmonary disease severe exacerbations. Am J Respir Crit Care Med 173(10):1114-21.

    Pastva, A. M., J. R. Wright, and K. L. Williams. (2007). Immunomodulatory roles of surfactant proteins A and D: implications in lung disease. Proc Am Thorac Soc 4(3):252-7.

    Rangasamy, T., C. Y. Cho, R. K. Thimmulappa, L. Zhen, S. S. Srisuma, et al. (2004). Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice. J Clin Invest 114(9):1248-59.

    Russell, R. E., A. Thorley, S. V. Culpitt, S. Dodd, L. E. Donnelly, et al. (2002). Alveolar macrophage-mediated elastolysis: roles of matrix metalloproteinases, cysteine, and serine proteases. Am J Physiol Lung Cell Mol Physiol 283(4):L867-73.

    Schraufstatter, I., P. A. Hyslop, J. H. Jackson, and C. G. Cochrane. (1988). Oxidant-induced DNA damage of target cells. J Clin Invest 82(3):1040-50.

    Schrijvers, D. M., G. R. De Meyer, M. M. Kockx, A. G. Herman, and W. Martinet. (2005). Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis. Arterioscler Thromb Vasc Biol 25(6):1256-61.

    Siafakas, N. M., P. Vermeire, N. B. Pride, P. Paoletti, J. Gibson, et al. (1995). Optimal assessment and management of chronic obstructive pulmonary disease (COPD). European Respiratory Journal 8(8):1398-1420.

    Sin, D. D., R. Leung, W. Q. Gan, and S. P. Man. (2007). Circulating surfactant protein D as a potential lung-specific biomarker of health outcomes in COPD: a pilot study. BMC Pulm Med 7:13.

    Singh, Mamta, Taruna Madan, Patrick Waters, Shreemanta K. Parida, P. Usha Sarma, et al. (2003). Protective effects of a recombinant fragment of human surfactant protein D in a murine model of pulmonary hypersensitivity induced by dust mite allergens. Immunology Letters 86(3):299-307.

    Snider, G. L., E. C. Lucey, and P. J. Stone. (1986). Animal models of emphysema. Am Rev Respir Dis 133(1):149-69.

    Strong, P. , U. Kishore, C. Morgan, A. Lopez Bernal, M. Singh, et al. (1998). A novel method of purifying lung surfactant proteins A and D from the lung lavage of alveolar proteinosis patients and from pooled amniotic fluid. J Immunol Methods 220:139-149.

    Tomita, K., P. J. Barnes, and I. M. Adcock. (2003) The effect of oxidative stress on histone acetylation and IL-8 release. Biochem Biophys Res Commun 301(2):572-7.

    Traves, S. L., S. V. Culpitt, REK. Russell, P. J. Barnes, and L. E. Donnelly. (2002) Increased levels of the chemokines GROα and MCP-1 in sputum samples from patients with COPD. Thorax 57:590–595.

    Triantaphyllopoulos, K., F. Hussain, M. Pinart, M. Zhang, F. Li, et al. (2011). A model of chronic inflammation and pulmonary emphysema after multiple ozone exposures in mice. Am J Physiol Lung Cell Mol Physiol 300(5):L691-700.

    Vandivier, R. W., C. A. Ogden, V. A. Fadok, P. R. Hoffmann, K. K. Brown, et al. (2002). Role of Surfactant Proteins A, D, and C1q in the Clearance of Apoptotic Cells In Vivo and In Vitro: Calreticulin and CD91 as a Common Collectin Receptor Complex. The Journal of Immunology 169(7):3978-3986.

    Vanoirbeek, J. A., M. Rinaldi, V. De Vooght, S. Haenen, S. Bobic, et al. (2010). Noninvasive and invasive pulmonary function in mouse models of obstructive and restrictive respiratory diseases. Am J Respir Cell Mol Biol 42(1):96-104.

    Vestbo, J., S. S. Hurd, A. G. Agusti, P. W. Jones, C. Vogelmeier, et al. (2013). Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 187(4):347-65.

    Wang, J., C. Shieh, P. You, H. Lei, and K. Reid. (1998). Inhibitory Effect of Pulmonary Surfactant Proteins A and D on Allergen-induced Lymphocyte Proliferation and Histamine Release in Children with Asthma. Am J Respir Crit Care Med 158:510–518.

    Wert, S. E., M. Yoshida, A. M. LeVine, M. Ikegami, T. Jones, et al. (2000). Increased metalloproteinase activity, oxidant production, and emphysema in surfactant protein D gene-inactivated mice. Proc Natl Acad Sci U S A 97(11):5972-7.

    White, R. T., D. Damm, J. Miller, K. Spratt, J. Schilling, et al. (1985). Isolation and characterization of the human pulmonary surfactant apoprotein gene. Nature 317(6035):361-3.

    Wiegman, C. H., F. Li, C. J. Clarke, E. Jazrawi, P. Kirkham, et al. (2014). A comprehensive analysis of oxidative stress in the ozone-induced lung inflammation mouse model. Clin Sci (Lond) 126(6):425-40.

    Winkler, C., E. N. Atochina-Vasserman, O. Holz, M. F. Beers, V. J. Erpenbeck, et al. (2011). Comprehensive characterisation of pulmonary and serum surfactant protein D in COPD. Respir Res 12:29.

    Wright, J. R. (2005). Immunoregulatory functions of surfactant proteins. Nat Rev Immunol 5(1):58-68.

    Wu, Huixing, Alexander Kuzmenko, Sijue Wan, Lyndsay Schaffer, Alison Weiss, et al. (2003). Surfactant proteins A and D inhibit the growth of Gram-negative bacteria by increasing membrane permeability. Journal of Clinical Investigation 111(10):1589-1602.

    Yamazoe, M., C. Nishitani, M. Takahashi, T. Katoh, S. Ariki, et al. (2008). Pulmonary surfactant protein D inhibits lipopolysaccharide (LPS)-induced inflammatory cell responses by altering LPS binding to its receptors. J Biol Chem 283(51):35878-88.

    Yoshida, M., T. R. Korfhagen, and J. A. Whitsett. (2001). Surfactant protein D regulates NF-kappa B and matrix metalloproteinase production in alveolar macrophages via oxidant-sensitive pathways. J Immunol 166(12):7514-9.

    Yoshida, M., and J. A. Whitsett. (2006). Alveolar macrophages and emphysema in surfactant protein-D-deficient mice. Respirology 11 Suppl:S37-40.

    Yoshikawa, T., G. Dent, J. Ward, G. Angco, G. Nong, et al. (2007). Impaired neutrophil chemotaxis in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 175(5):473-9.

    下載圖示 校內:2023-01-22公開
    校外:2023-01-22公開
    QR CODE