簡易檢索 / 詳目顯示

研究生: 黃柏維
Huang, Po-Wei
論文名稱: 秀麗隱桿線蟲的核仁蛋白 NOL-58 會調控核仁監視反應和 p38 MAPK 途徑藉此對抗細菌感染
Nucleolar protein NOL-58 regulates nucleolar surveillance responses and the p38 MAPK pathway against bacterial infection in C. elegans
指導教授: 陳柏齡
Chen, Po-Lin
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 68
中文關鍵詞: 核仁蛋白NOL-58秀麗隱桿線蟲達卡產氣單胞菌p38 MAPK 訊息傳遞路徑先天免疫核仁監視反應
外文關鍵詞: nucleolar protein, NOL-58, Caenorhabditis elegans, Aeromonas dhakensis, p38 MAPK, innate immunity, nucleolar surveillance response
相關次數: 點閱:74下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Abstract I 中文摘要 II 致謝 III Introduction 1 1. Aeromonas dhakensis 1 2. Caenorhabditis elegans 3 3. Physiologic of C. elegans 5 4. Innate immunity of C. elegans 5 5. Nucleolar proteins 6 6. NOL-58 8 Materials and Methods 10 1. Caenorhabditis elegans strains and mutant alleles 10 2. Bacteria strains and plasmids 10 3. Media and chemical 11 4. Cultivation of C. elegans and bleaching 11 5. RNAi screening of the nucleolar proteins 11 6. Infectious survival assay of nematodes 12 7. Measurement of phenotypic and physiologic characteristics of C. elegans 12 8. Tissue-specific knockdown and epistasis analysis 13 9. p38 phosphorylation western blot analysis 13 10. Quantification of nol-58 gene and pmk-1 downstream antimicrobial genes expression 14 11. The nucleolar surveillance response (NSR) analysis and confocal microscope 15 12. The construction of the nol-58 overexpression animal 15 13. Statistical analysis 15 Result 16 1. Screening of the nucleolar proteins list of C. elegans 16 2. Worms with knockdown of nol-58 are resistant to A. dhakensis 17 3. Knockdown of nol-58 leads to phenotypic and physiologic changes in C. elegans 17 4. Silencing nol-58 expression also mitigates several bacterial infections 19 5. nol-58 has its effect in neurons, intestine, and germline 19 6. NOL-58 affects the p38 MPAK innate immunity pathway of C. elegans 20 7. Expression level of the phosphorylated p38 and downstream antimicrobial genes were upregulated when nol-58 was interfered 22 8. Interference of nol-58 circumvents the nucleolar stress responses in C. elegans 23 Conclusion 25 Discussion 26 1. Functional accompany of nucleolar proteins with NOL-58 26 2. Direct evidence of ablated NOL-58 induces phenomena 27 3. Potential mechanism of how nol-58 regulates the immune pathway 27 4. The association of HLH-30 and NOL-58 28 5. Box C/D RNP also regulated mitochondrial surveillance 29 6. Future research in human cell lines 30 References 31 Figures 39 Figure 1. Flow chart of the nucleolar protein RNAi-based screening in C. elegans. 39 Figure 2. Decreased expression of most nucleolar proteins grants resistance to A. dhakensis infections in C. elegans. 41 Figure 3. The appearance of C. elegans under the microscope. 42 Figure 4. The measurement of physiologic characteristics shows differences between nol-58 silencing and wild-type nematodes. 44 Figure 5. The resistance to bacterial infections is not limited in A. dhakensis. 45 Figure 6. Knockdown nol-58 in tissue-specific strains and their resistance. 47 Figure 7. The immune pathways that were not associated with nol-58 in C. elegans against A. dhakensis infection. 48 Figure 8. Immune pathways that are epistatic to nol-58 in C. elegans with A. dhakensis infection. 50 Figure 9. The p38 phosphorylation is enhanced in nol-58 knockdown worms. 52 Figure 10. Relative mRNA expression of pmk-1 (p38 MAPK) downstream antimicrobial genes. 54 Figure 11. The FIB-1::GFP strain (cguIs001) and its survival. 56 Figure 12. The Nucleolar Surveillance Response (NSR) is reverted by nol-58 inhibition during A. dhakensis infection. 58 Figure 13. The silencing of nol-58 regresses the ability of Nucleolar Surveillance responses. 60 Figure 14. nol-58 is the most effective nucleolar protein on the list in terms of resistance to A. dhakensis. 61 Figure 15. The hlh-30 is not related to nol-58 in C. elegans. 63 Figure 16. Model of nol-58 regulates nucleolar surveillance response and p38 MAPK pathway in bacterial infection. 64 Tables 65 Table 1. The survival result of nucleolar protein screening in C. elegans. 65 Table 2. The survival result of nol-58 knockdown against multiple bacteria in C. elegans. 66 Table 3. The survival result of tissue-specific nol-58 knockdown in C. elegans. 67 Table 4. The survival result of nol-58 related epistasis analysis in C. elegans. 68

    1. Chen PL, Lamy B, Ko WC. Aeromonas dhakensis, an Increasingly Recognized Human Pathogen. Front Microbiol 2016;7:793. DOI: 10.3389/fmicb.2016.00793.
    2. Chen PL, Wu CJ, Tsai PJ, et al. Virulence diversity among bacteremic Aeromonas isolates: ex vivo, animal, and clinical evidences. PLoS One 2014;9(11):e111213. DOI: 10.1371/journal.pone.0111213.
    3. Janda JM, Abbott SL. The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin Microbiol Rev 2010;23(1):35-73. DOI: 10.1128/CMR.00039-09.
    4. Chen PL, Lee TF, Wu CJ, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry can accurately differentiate Aeromonas dhakensis from A. hydrophila, A. caviae, and A. veronii. J Clin Microbiol 2014;52(7):2625-8. DOI: 10.1128/JCM.01025-14.
    5. Du X, Wang M, Zhou H, et al. Comparison of the Multiple Platforms to Identify Various Aeromonas Species. Front Microbiol 2020;11:625961. DOI: 10.3389/fmicb.2020.625961.
    6. Martino ME, Fasolato L, Montemurro F, et al. Determination of microbial diversity of Aeromonas strains on the basis of multilocus sequence typing, phenotype, and presence of putative virulence genes. Appl Environ Microbiol 2011;77(14):4986-5000. DOI: 10.1128/AEM.00708-11.
    7. Martinez-Murcia AJ, Saavedra MJ, Mota VR, Maier T, Stackebrandt E, Cousin S. Aeromonas aquariorum sp. nov., isolated from aquaria of ornamental fish. Int J Syst Evol Microbiol 2008;58(Pt 5):1169-75. DOI: 10.1099/ijs.0.65352-0.
    8. Alperi A, Martinez-Murcia AJ, Ko WC, Monera A, Saavedra MJ, Figueras MJ. Aeromonas taiwanensis sp. nov. and Aeromonas sanarellii sp. nov., clinical species from Taiwan. Int J Syst Evol Microbiol 2010;60(Pt 9):2048-2055. DOI: 10.1099/ijs.0.014621-0.
    9. Aravena-Roman M, Harnett GB, Riley TV, Inglis TJ, Chang BJ. Aeromonas aquariorum is widely distributed in clinical and environmental specimens and can be misidentified as Aeromonas hydrophila. J Clin Microbiol 2011;49(8):3006-8. DOI: 10.1128/JCM.00472-11.
    10. Chen PL, Wu CJ, Chen CS, Tsai PJ, Tang HJ, Ko WC. A comparative study of clinical Aeromonas dhakensis and Aeromonas hydrophila isolates in southern Taiwan: A. dhakensis is more predominant and virulent. Clin Microbiol Infect 2014;20(7):O428-34. DOI: 10.1111/1469-0691.12456.
    11. Dal Peraro M, van der Goot FG. Pore-forming toxins: ancient, but never really out of fashion. Nat Rev Microbiol 2016;14(2):77-92. DOI: 10.1038/nrmicro.2015.3.
    12. Chen PL, Tsai PJ, Chen CS, et al. Aeromonas stool isolates from individuals with or without diarrhea in southern Taiwan: Predominance of Aeromonas veronii. J Microbiol Immunol Infect 2015;48(6):618-24. DOI: 10.1016/j.jmii.2014.08.007.
    13. Chen PL, Chen YW, Ou CC, et al. A Disease Model of Muscle Necrosis Caused by Aeromonas dhakensis Infection in Caenorhabditis elegans. Front Microbiol 2016;7:2058. DOI: 10.3389/fmicb.2016.02058.
    14. Brenner S. The genetics of Caenorhabditis elegans. Genetics 1974;77(1):71-94. DOI: 10.1093/genetics/77.1.71.
    15. Sterken MG, Snoek LB, Kammenga JE, Andersen EC. The laboratory domestication of Caenorhabditis elegans. Trends Genet 2015;31(5):224-31. DOI: 10.1016/j.tig.2015.02.009.
    16. Loer CM, Kenyon CJ. Serotonin-deficient mutants and male mating behavior in the nematode Caenorhabditis elegans. J Neurosci 1993;13(12):5407-17. DOI: 10.1523/JNEUROSCI.13-12-05407.1993.
    17. Corsi AK. A biochemist's guide to Caenorhabditis elegans. Anal Biochem 2006;359(1):1-17. DOI: 10.1016/j.ab.2006.07.033.
    18. Berks M. The C. elegans genome sequencing project. C. elegans Genome Mapping and Sequencing Consortium. Genome Res 1995;5(2):99-104. DOI: 10.1101/gr.5.2.99.
    19. Brenner S. Nobel lecture. Nature's gift to science. Biosci Rep 2003;23(5-6):225-37. DOI: 10.1023/b:bire.0000019186.48208.f3.
    20. Sulston JE. Caenorhabditis elegans: the cell lineage and beyond (Nobel lecture). Chembiochem 2003;4(8):688-96. DOI: 10.1002/cbic.200300577.
    21. Horvitz HR. Worms, life, and death (Nobel lecture). Chembiochem 2003;4(8):697-711. DOI: 10.1002/cbic.200300614.
    22. Mello CC. Return to the RNAi world: rethinking gene expression and evolution (Nobel Lecture). Angew Chem Int Ed Engl 2007;46(37):6985-94. DOI: 10.1002/anie.200701713.
    23. Fire AZ. Gene silencing by double-stranded RNA (Nobel Lecture). Angew Chem Int Ed Engl 2007;46(37):6966-84. DOI: 10.1002/anie.200701979.
    24. Chalfie M. GFP: lighting up life (Nobel Lecture). Angew Chem Int Ed Engl 2009;48(31):5603-11. DOI: 10.1002/anie.200902040.
    25. Kamath RS, Fraser AG, Dong Y, et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 2003;421(6920):231-7. DOI: 10.1038/nature01278.
    26. Kim DH, Feinbaum R, Alloing G, et al. A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science 2002;297(5581):623-6. DOI: 10.1126/science.1073759.
    27. Oh SW, Mukhopadhyay A, Svrzikapa N, Jiang F, Davis RJ, Tissenbaum HA. JNK regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/DAF-16. Proc Natl Acad Sci U S A 2005;102(12):4494-9. DOI: 10.1073/pnas.0500749102.
    28. Shin H, Kaplan REW, Duong T, Fakieh R, Reiner DJ. Ral Signals through a MAP4 Kinase-p38 MAP Kinase Cascade in C. elegans Cell Fate Patterning. Cell Rep 2018;24(10):2669-2681 e5. DOI: 10.1016/j.celrep.2018.08.011.
    29. Le Roith D, Zick Y. Recent advances in our understanding of insulin action and insulin resistance. Diabetes Care 2001;24(3):588-97. DOI: 10.2337/diacare.24.3.588.
    30. Evans EA, Chen WC, Tan MW. The DAF-2 insulin-like signaling pathway independently regulates aging and immunity in C. elegans. Aging Cell 2008;7(6):879-93. DOI: 10.1111/j.1474-9726.2008.00435.x.
    31. Miyata S, Begun J, Troemel ER, Ausubel FM. DAF-16-dependent suppression of immunity during reproduction in Caenorhabditis elegans. Genetics 2008;178(2):903-18. DOI: 10.1534/genetics.107.083923.
    32. Lapierre LR, De Magalhaes Filho CD, McQuary PR, et al. The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans. Nat Commun 2013;4:2267. DOI: 10.1038/ncomms3267.
    33. Chen HD, Kao CY, Liu BY, et al. HLH-30/TFEB-mediated autophagy functions in a cell-autonomous manner for epithelium intrinsic cellular defense against bacterial pore-forming toxin in C. elegans. Autophagy 2017;13(2):371-385. DOI: 10.1080/15548627.2016.1256933.
    34. Engelmann I, Pujol N. Innate immunity in C. elegans. Adv Exp Med Biol 2010;708:105-21. DOI: 10.1007/978-1-4419-8059-5_6.
    35. Avery L, Shtonda BB. Food transport in the C. elegans pharynx. J Exp Biol 2003;206(Pt 14):2441-57. DOI: 10.1242/jeb.00433.
    36. Avery L, Horvitz HR. Effects of starvation and neuroactive drugs on feeding in Caenorhabditis elegans. J Exp Zool 1990;253(3):263-70. DOI: 10.1002/jez.1402530305.
    37. Elkabti AB, Issi L, Rao RP. Caenorhabditis elegans as a Model Host to Monitor the Candida Infection Processes. J Fungi (Basel) 2018;4(4). DOI: 10.3390/jof4040123.
    38. Fraser AG, Kamath RS, Zipperlen P, Martinez-Campos M, Sohrmann M, Ahringer J. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 2000;408(6810):325-30. DOI: 10.1038/35042517.
    39. Piano F, Schetter AJ, Morton DG, et al. Gene clustering based on RNAi phenotypes of ovary-enriched genes in C. elegans. Curr Biol 2002;12(22):1959-64. DOI: 10.1016/s0960-9822(02)01301-5.
    40. Fuchs SY, Adler V, Pincus MR, Ronai Z. MEKK1/JNK signaling stabilizes and activates p53. Proc Natl Acad Sci U S A 1998;95(18):10541-6. DOI: 10.1073/pnas.95.18.10541.
    41. Singh V, Aballay A. Regulation of DAF-16-mediated Innate Immunity in Caenorhabditis elegans. J Biol Chem 2009;284(51):35580-7. DOI: 10.1074/jbc.M109.060905.
    42. Styer KL, Singh V, Macosko E, Steele SE, Bargmann CI, Aballay A. Innate immunity in Caenorhabditis elegans is regulated by neurons expressing NPR-1/GPCR. Science 2008;322(5900):460-4. DOI: 10.1126/science.1163673.
    43. Haskins KA, Russell JF, Gaddis N, Dressman HK, Aballay A. Unfolded protein response genes regulated by CED-1 are required for Caenorhabditis elegans innate immunity. Dev Cell 2008;15(1):87-97. DOI: 10.1016/j.devcel.2008.05.006.
    44. Murphy CT, McCarroll SA, Bargmann CI, et al. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 2003;424(6946):277-83. DOI: 10.1038/nature01789.
    45. Bischof LJ, Kao CY, Los FC, et al. Activation of the unfolded protein response is required for defenses against bacterial pore-forming toxin in vivo. PLoS Pathog 2008;4(10):e1000176. DOI: 10.1371/journal.ppat.1000176.
    46. Pukkila-Worley R, Ausubel FM. Immune defense mechanisms in the Caenorhabditis elegans intestinal epithelium. Curr Opin Immunol 2012;24(1):3-9. DOI: 10.1016/j.coi.2011.10.004.
    47. Kyriakis JM, Avruch J. Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol Rev 2012;92(2):689-737. DOI: 10.1152/physrev.00028.2011.
    48. Kim DH, Liberati NT, Mizuno T, et al. Integration of Caenorhabditis elegans MAPK pathways mediating immunity and stress resistance by MEK-1 MAPK kinase and VHP-1 MAPK phosphatase. Proc Natl Acad Sci U S A 2004;101(30):10990-4. DOI: 10.1073/pnas.0403546101.
    49. Xu A, Shi G, Liu F, Ge B. Caenorhabditis elegans mom-4 is required for the activation of the p38 MAPK signaling pathway in the response to Pseudomonas aeruginosa infection. Protein Cell 2013;4(1):53-61. DOI: 10.1007/s13238-012-2080-z.
    50. Fuhrman LE, Goel AK, Smith J, Shianna KV, Aballay A. Nucleolar proteins suppress Caenorhabditis elegans innate immunity by inhibiting p53/CEP-1. PLoS Genet 2009;5(9):e1000657. DOI: 10.1371/journal.pgen.1000657.
    51. Gao MX, Liao EH, Yu B, Wang Y, Zhen M, Derry WB. The SCF FSN-1 ubiquitin ligase controls germline apoptosis through CEP-1/p53 in C. elegans. Cell Death Differ 2008;15(6):1054-62. DOI: 10.1038/cdd.2008.30.
    52. Pender CL, Horvitz HR. Hypoxia-inducible factor cell non-autonomously regulates C. elegans stress responses and behavior via a nuclear receptor. Elife 2018;7. DOI: 10.7554/eLife.36828.
    53. Luhachack LG, Visvikis O, Wollenberg AC, Lacy-Hulbert A, Stuart LM, Irazoqui JE. EGL-9 controls C. elegans host defense specificity through prolyl hydroxylation-dependent and -independent HIF-1 pathways. PLoS Pathog 2012;8(7):e1002798. DOI: 10.1371/journal.ppat.1002798.
    54. Avery L, Wasserman S. Ordering gene function: the interpretation of epistasis in regulatory hierarchies. Trends Genet 1992;8(9):312-6. DOI: 10.1016/0168-9525(92)90263-4.
    55. Pederson T. The plurifunctional nucleolus. Nucleic Acids Res 1998;26(17):3871-6. DOI: 10.1093/nar/26.17.3871.
    56. Boisvert FM, van Koningsbruggen S, Navascues J, Lamond AI. The multifunctional nucleolus. Nat Rev Mol Cell Biol 2007;8(7):574-85. DOI: 10.1038/nrm2184.
    57. Andersen JS, Lam YW, Leung AK, et al. Nucleolar proteome dynamics. Nature 2005;433(7021):77-83. DOI: 10.1038/nature03207.
    58. Leung AK, Andersen JS, Mann M, Lamond AI. Bioinformatic analysis of the nucleolus. Biochem J 2003;376(Pt 3):553-69. DOI: 10.1042/BJ20031169.
    59. Coute Y, Burgess JA, Diaz JJ, et al. Deciphering the human nucleolar proteome. Mass Spectrom Rev 2006;25(2):215-34. DOI: 10.1002/mas.20067.
    60. Hinsby AM, Kiemer L, Karlberg EO, et al. A wiring of the human nucleolus. Mol Cell 2006;22(2):285-95. DOI: 10.1016/j.molcel.2006.03.012.
    61. Lee LW, Lee CC, Huang CR, Lo SJ. The nucleolus of Caenorhabditis elegans. J Biomed Biotechnol 2012;2012:601274. DOI: 10.1155/2012/601274.
    62. Marciniak RA, Lombard DB, Johnson FB, Guarente L. Nucleolar localization of the Werner syndrome protein in human cells. Proc Natl Acad Sci U S A 1998;95(12):6887-92. DOI: 10.1073/pnas.95.12.6887.
    63. Brosh RM, Jr., Karmakar P, Sommers JA, et al. p53 Modulates the exonuclease activity of Werner syndrome protein. J Biol Chem 2001;276(37):35093-102. DOI: 10.1074/jbc.M103332200.
    64. Isaac C, Marsh KL, Paznekas WA, et al. Characterization of the nucleolar gene product, treacle, in Treacher Collins syndrome. Mol Biol Cell 2000;11(9):3061-71. DOI: 10.1091/mbc.11.9.3061.
    65. Heiss NS, Girod A, Salowsky R, Wiemann S, Pepperkok R, Poustka A. Dyskerin localizes to the nucleolus and its mislocalization is unlikely to play a role in the pathogenesis of dyskeratosis congenita. Hum Mol Genet 1999;8(13):2515-24. DOI: 10.1093/hmg/8.13.2515.
    66. Woo LL, Futami K, Shimamoto A, Furuichi Y, Frank KM. The Rothmund-Thomson gene product RECQL4 localizes to the nucleolus in response to oxidative stress. Exp Cell Res 2006;312(17):3443-57. DOI: 10.1016/j.yexcr.2006.07.023.
    67. Bahadori M, Azizi MH, Dabiri S. Recent Advances on Nucleolar Functions in Health and Disease. Arch Iran Med 2018;21(12):600-607.
    68. Tsai RY, McKay RD. A nucleolar mechanism controlling cell proliferation in stem cells and cancer cells. Genes Dev 2002;16(23):2991-3003. DOI: 10.1101/gad.55671.
    69. Bahadori M, Azizi MH, Dabiri S, Bahadori N. Effects of Human Nucleolus Upon Guest Viral-Life, Focusing in COVID-19 Infection: A Mini- Review. Iran J Pathol 2022;17(1):1-7. DOI: 10.30699/IJP.2021.540305.2744.
    70. Salvetti A, Greco A. Viruses and the nucleolus: the fatal attraction. Biochim Biophys Acta 2014;1842(6):840-7. DOI: 10.1016/j.bbadis.2013.12.010.
    71. Cawood R, Harrison SM, Dove BK, Reed ML, Hiscox JA. Cell cycle dependent nucleolar localization of the coronavirus nucleocapsid protein. Cell Cycle 2007;6(7):863-7. DOI: 10.4161/cc.6.7.4032.
    72. Ouassou H, Kharchoufa L, Bouhrim M, et al. The Pathogenesis of Coronavirus Disease 2019 (COVID-19): Evaluation and Prevention. J Immunol Res 2020;2020:1357983. DOI: 10.1155/2020/1357983.
    73. Jin Y, Yang H, Ji W, et al. Virology, Epidemiology, Pathogenesis, and Control of COVID-19. Viruses 2020;12(4). DOI: 10.3390/v12040372.
    74. Bahadori M. New Insights into Connection of Nucleolar Functions and Cancer. Tanaffos 2019;18(3):173-179.
    75. Olson MO. Sensing cellular stress: another new function for the nucleolus? Sci STKE 2004;2004(224):pe10. DOI: 10.1126/stke.2242004pe10.
    76. Mayer C, Bierhoff H, Grummt I. The nucleolus as a stress sensor: JNK2 inactivates the transcription factor TIF-IA and down-regulates rRNA synthesis. Genes Dev 2005;19(8):933-41. DOI: 10.1101/gad.333205.
    77. Ellis JC, Brown DD, Brown JW. The small nucleolar ribonucleoprotein (snoRNP) database. RNA 2010;16(4):664-6. DOI: 10.1261/rna.1871310.
    78. Azevedo-Favory J, Gaspin C, Ayadi L, et al. Mapping rRNA 2'-O-methylations and identification of C/D snoRNAs in Arabidopsis thaliana plants. RNA Biol 2021;18(11):1760-1777. DOI: 10.1080/15476286.2020.1869892.
    79. Penzo M, Montanaro L. Turning Uridines around: Role of rRNA Pseudouridylation in Ribosome Biogenesis and Ribosomal Function. Biomolecules 2018;8(2). DOI: 10.3390/biom8020038.
    80. Ojha S, Malla S, Lyons SM. snoRNPs: Functions in Ribosome Biogenesis. Biomolecules 2020;10(5). DOI: 10.3390/biom10050783.
    81. Liang J, Wen J, Huang Z, Chen XP, Zhang BX, Chu L. Small Nucleolar RNAs: Insight Into Their Function in Cancer. Front Oncol 2019;9:587. DOI: 10.3389/fonc.2019.00587.
    82. Elliott BA, Ho HT, Ranganathan SV, et al. Modification of messenger RNA by 2'-O-methylation regulates gene expression in vivo. Nat Commun 2019;10(1):3401. DOI: 10.1038/s41467-019-11375-7.
    83. Tiku V, Jain C, Raz Y, et al. Small nucleoli are a cellular hallmark of longevity. Nat Commun 2017;8:16083. DOI: 10.1038/ncomms16083.
    84. Hofler S, Lukat P, Blankenfeldt W, Carlomagno T. High-resolution structure of eukaryotic Fibrillarin interacting with Nop56 amino-terminal domain. RNA 2021;27(4):496-512. DOI: 10.1261/rna.077396.120.
    85. Wu P, Brockenbrough JS, Metcalfe AC, Chen S, Aris JP. Nop5p is a small nucleolar ribonucleoprotein component required for pre-18 S rRNA processing in yeast. J Biol Chem 1998;273(26):16453-63. DOI: 10.1074/jbc.273.26.16453.
    86. Cervantes M, Forne I, Ranjit S, Gratton E, Imhof A, Sassone-Corsi P. BMAL1 Associates with NOP58 in the Nucleolus and Contributes to Pre-rRNA Processing. iScience 2020;23(6):101151. DOI: 10.1016/j.isci.2020.101151.
    87. Wu H, Qin W, Lu S, et al. Long noncoding RNA ZFAS1 promoting small nucleolar RNA-mediated 2'-O-methylation via NOP58 recruitment in colorectal cancer. Mol Cancer 2020;19(1):95. DOI: 10.1186/s12943-020-01201-w.
    88. Wang J, Huang R, Huang Y, Chen Y, Chen F. Overexpression of NOP58 as a Prognostic Marker in Hepatocellular Carcinoma: A TCGA Data-Based Analysis. Adv Ther 2021;38(6):3342-3361. DOI: 10.1007/s12325-021-01762-2.
    89. Wu CJ, Wang HC, Chen CS, et al. Genome sequence of a novel human pathogen, Aeromonas aquariorum. J Bacteriol 2012;194(15):4114-5. DOI: 10.1128/JB.00621-12.
    90. Chen YW, Ko WC, Chen CS, Chen PL. RIOK-1 Is a Suppressor of the p38 MAPK Innate Immune Pathway in Caenorhabditis elegans. Front Immunol 2018;9:774. DOI: 10.3389/fimmu.2018.00774.
    91. Chou TC, Chiu HC, Kuo CJ, et al. Enterohaemorrhagic Escherichia coli O157:H7 Shiga-like toxin 1 is required for full pathogenicity and activation of the p38 mitogen-activated protein kinase pathway in Caenorhabditis elegans. Cell Microbiol 2013;15(1):82-97. DOI: 10.1111/cmi.12030.
    92. Han S, Schroeder EA, Silva-Garcia CG, Hebestreit K, Mair WB, Brunet A. Mono-unsaturated fatty acids link H3K4me3 modifiers to C. elegans lifespan. Nature 2017;544(7649):185-190. DOI: 10.1038/nature21686.
    93. Sun X, Chen WD, Wang YD. DAF-16/FOXO Transcription Factor in Aging and Longevity. Front Pharmacol 2017;8:548. DOI: 10.3389/fphar.2017.00548.
    94. Yang K, Yang J, Yi J. Nucleolar Stress: hallmarks, sensing mechanism and diseases. Cell Stress 2018;2(6):125-140. DOI: 10.15698/cst2018.06.139.
    95. Hannan KM, Soo P, Wong MS, et al. Nuclear stabilization of p53 requires a functional nucleolar surveillance pathway. Cell Rep 2022;41(5):111571. DOI: 10.1016/j.celrep.2022.111571.
    96. Pfister AS. Emerging Role of the Nucleolar Stress Response in Autophagy. Front Cell Neurosci 2019;13:156. DOI: 10.3389/fncel.2019.00156.
    97. Visvikis O, Ihuegbu N, Labed SA, et al. Innate host defense requires TFEB-mediated transcription of cytoprotective and antimicrobial genes. Immunity 2014;40(6):896-909. DOI: 10.1016/j.immuni.2014.05.002.
    98. Tjahjono E, Revtovich AV, Kirienko NV. Box C/D small nucleolar ribonucleoproteins regulate mitochondrial surveillance and innate immunity. PLoS Genet 2022;18(3):e1010103. DOI: 10.1371/journal.pgen.1010103.

    無法下載圖示 校內:2028-08-16公開
    校外:2028-08-16公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE