| 研究生: |
盧思辰 Lu, Sih-Chen |
|---|---|
| 論文名稱: |
奈米球鏡微影術製作表面電漿超穎材料之研究 Fabrication of Plasmonic Metamaterials using Nanospherical-Lens Lithography |
| 指導教授: |
張允崇
Chang, Yun-Chorng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 奈米球鏡微影術 、侷域性表面電漿共振 、超穎材料 |
| 外文關鍵詞: | Nanospherical-Lens Lithography, LSPR, Metamaterials |
| 相關次數: | 點閱:84 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,奈米製程技術主要以奈米球微影術及奈米球鏡微影術為主。透過氧電漿輔助奈米球微影術可以製備大面積的奈米銀網狀陣列結構,且可以利用模板撕除的方式(Template Stripping)將奈米銀網狀結構轉移至可撓式基板上。由於奈米銀網狀陣列具有低片電阻及高穿透率的特性,因此可作為透明導電層應用至OLED中,其穿透率峰值位於波長600nm左右。
此外,本研究中奈米球鏡微影術除使用對稱光源外,也使用非對稱光源於製程上。首先,以商用的汞燈作為曝光光源,其商用汞燈的光形為圓形,為一對稱光源,在此製程中我們引入了小角度斜向蒸鍍、傾角曝光與旋轉斜向蒸鍍等技術,可成功製備成對、三對、四對、五對、六對與七對的奈米金屬圓盤陣列結構,且也可成功製備奈米圓環與奈米C環陣列結構。
非對稱光源方面,使用的是商用的手提式紫外燈,其手提式紫外燈光源在平行與垂直燈方向上的光形是不一樣的,為一線形的非對稱光源,此一結果使得奈米球聚焦入射UV光時會聚焦成一橢圓形結構。實驗發現,奈米橢圓結構長軸為平行燈的方向,且長軸長會隨曝光時間而做變化,奈米橢圓結構長短軸比則是會與奈米球直徑相關,當使用的奈米球球徑越大時可得到較大的長短軸比。有關奈米橢圓結構的LSPR的峰值位置,可藉由微影參數的改變調整在波數1300 cm-1至2000 cm-1之間,此LSPR峰值範圍可作為一良好的表面增強紅外光吸收(SEIRA)平台。另外,利用調整曝光次數、試片平移量、曝光傾角與曝光時間,我們可以製備紅外光超穎材料結構與平面對掌形超穎材料結構。
綜合以上所述,我們已可利用奈米球微影術與奈米球鏡微影術來製備各種形狀的金屬奈米結構,且我們相信以此兩種製成方式可製備更多更複雜的奈米結構,且在未來超穎材料之應用上為一有用的製程方式。
In this dissertation, nanofabrication using Nanosphere and Nanospherical-Lens Lithography will be demonstrated. Large area of Ag nanohole array is fabricated by plasma-assisted Nanosphere Lithography and is subsequently transfer to a flexible substrate by template stripping method. The Ag nanohole array, which exhibits low sheet resistance and high transmittance around 600 nm can be used as transparent conducting electrode layer of organic light emitting devices.
In addition, Nanospherical-Lens lithography using either a symmetry or asymmetry ultraviolet (UV) light source is also investigated in this research. First, a commercial Hg lamp, whose emission pattern is round-shaped, is used as the light source. Several key technologies, including small angled deposition, angled exposure process and rotational angled deposition, are also developed to fabricate nanoparticle dimer, trimer, tetramer, pentamer, hexamer, and heptamer arrays. Nano-ring and nano-C arrays are also successfully demonstrated.
An asymmetry light source is a commercial hand-held UV lamp, whose emission pattern is very different between the direction parallel and perpendicular to the lamp direction. This results in the elliptical-shaped focusing patterns by the nanospherical lenses. We have found out that the long axis of the nano-ellipse is parallel to the lamp direction and the length of the long axis can be tuned by varying the exposure durations. The aspect ratio of the nano-ellipse is related to the diameters of the nanosphere, as larger nanospheres results in higher aspect ratios. The LSPR of the nano-ellipses is tunable from 1300 to 2000 cm-1, which is a perfect platform for surface-enhanced infrared absorption (SEIRA). We also demonstrate the fabrication of IR metamaterials and planar chiral metamaterials by performing multiple exposures with controlled sample location, angle to the lamp, and exposure duration.
In summary, we have demonstrated the ability to fabricate various metal nanostructures using either Nanosphere lithography or Nanospherical-Lens Lithography. We believe these methods are suitable to fabricate more complex patterns and are thus powerful tools for future metamaterials applications.
[1] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayamat, “Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates.,” Langmuir, vol. 8, no. 12, pp. 3183–3190, 1992.
[2] A. D. Ormonde, E. C. M. Hicks, J. Castillo, and R. P. Van Duyne, “Nanosphere Lithography : Fabrication of Large-Area Ag Nanoparticle Arrays by Convective Self-Assembly and Their Characterization by Scanning UV-Visible Extinction Spectroscopy.,” Langmuir, vol. 20, no. 16, pp. 6927–6931, 2004.
[3] A. J. Haes, C. L. Haynes, A. D. Mcfarland, and G. C. Schatz, “Plasmonic Materials for Surface-Enhanced Sensing and Spectrosopy.,” MRS BULLETIN, vol. 30, no. May, 2005.
[4] A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser Fabrication of Large-Scale Nanoparticle Arrays for Sensing Applications.,” ACSNANO, vol. 5, no. 6, pp. 4843–4849, 2011.
[5] L. S. Live and O. R. Bolduc, “Propagating Surface Plasmon Resonance on Microhole Arrays.,” Analytical Chemistry, vol. 82, no. 9, pp. 3780–3787, 2010.
[6] Y. Choi, S. Hong, and L. P. Lee, “Shadow overlap ion-beam lithography for nanoarchitectures.,” Nano letters, vol. 9, no. 11, pp. 3726–31, Nov. 2009.
[7] K. Chang and P. Luan, “Introduction to photonic crystals.,” 光學工程, vol. 第九十五期, pp. 1–7, 1996.
[8] 張高德、欒丕綱, “光子晶體中的波傳播,” 物理雙月刊, pp. 844–850, 2006.
[9] 楊志忠, “新世紀奈米級光電材料結構 -- 光子晶體,” 物理雙月刊, vol. 二十三卷 六期, pp. 647–651, 2001.
[10] T. H. Reilly III, R. C. Tenent, T. M. Barnes, K. L. Rowlen, and J. Van De, “Controlling the Optical Properties of Plasmonic Disordered Nanohole Silver Films,” ACSNANO, vol. 4, no. 2, pp. 615–624, 2010.
[11] W. Wu, D. Dey, O. G. Memis, A. Katsnelson, and H. Mohseni, “A Novel Self-aligned and Maskless Process for Formation of Highly Uniform Arrays of Nanoholes and Nanopillars.,” Nanoscale Research Letters, vol. 3, no. 3, pp. 123–127, Mar. 2008.
[12] W. Wu, D. Dey, A. Katsnelson, O. G. Memis, and H. Mohseni, “Large areas of periodic nanoholes perforated in multistacked films produced by lift-off.,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 26, no. 5, p. 1745, 2008.
[13] W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars.,” Nanotechnology, vol. 18, no. 48, p. 485302, Dec. 2007.
[14] W. Wu, D. Dey, O. G. Memis, A. Katsnelson, and H. Mohseni, “Fabrication of Large Area Periodic Nanostructures Using Nanosphere Photolithography.,” Nanoscale Research Letters, vol. 3, no. 10, pp. 351–354, Sep. 2008.
[15] J.-B. Yeo and H.-Y. Lee, “Realization of multi-paired photonic crystals by the multiple-exposure nanosphere lithography process.,” Scripta Materialia, vol. 66, pp. 311–314, 2012.
[16] Y.-C. Chang, H.-C. Chung, S.-C. Lu, and T.-F. Guo, “A large-scale sub-100 nm Au nanodisk array fabricated using nanospherical-lens lithography: a low-cost localized surface plasmon resonance sensor.,” Nanotechnology, vol. 24, no. 9, p. 095302, Mar. 2013.
[17] S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates.,” ACS nano, vol. 6, no. 1, pp. 979–85, Jan. 2012.
[18] 吳民耀、劉威志, “表面電漿子理論與模擬,” 物理雙月刊, vol. 二十八卷二期, pp. 486–496, 2006.
[19] 邱國斌、蔡定平, “金屬表面電漿簡介,” 物理雙月刊, vol. 二十八卷二期, pp. 472–485, 2006.
[20] 曾賢德, “金奈米粒子的表面電漿共振特性:耦合、應用與樣品製作,” 物理雙月刊, vol. 32卷2期, pp. 126–135, 2010.
[21] E. Hutter and J. H. Fendler, “Exploitation of Localized Surface Plasmon Resonance.,” Advanced Materials, vol. 16, no. 19, pp. 1685–1706, Oct. 2004.
[22] S. Aksu, A. a Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy.,” Nano letters, vol. 10, no. 7, pp. 2511–8, Jul. 2010.
[23] R. Adato, A. a Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays.,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 46, pp. 19227–32, Nov. 2009.
[24] R. Adato, A. a Yanik, and H. Altug, “On chip plasmonic monopole nano-antennas and circuits.,” Nano letters, vol. 11, no. 12, pp. 5219–26, Dec. 2011.
[25] F. J. Rodríguez-Fortuño, M. Martínez-Marco, B. Tomás-Navarro, R. Ortuño, J. Martí, A. Martínez, and P. J. Rodríguez-Cantó, “Highly-sensitive chemical detection in the infrared regime using plasmonic gold nanocrosses.,” Applied Physics Letters, vol. 98, no. 13, p. 133118, 2011.
[26] N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V Moshchalkov, “Plasmon Line Shaping Using Nanocrosses for High Sensitivity Localized Surface Plasmon Resonance Sensing.,” Nano letters, pp. 391–397, 2011.
[27] C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers.,” Nature materials, vol. 11, no. 1, pp. 69–75, Jan. 2012.
[28] R. Adato and H. Altug, “Dual-Band Perfect Absorber for Multispctral Plasmon-Enhanced Infrared Spectroscopy.,” ACSNANO, vol. 6, no. 9, pp. 7998–8006, 2012.
[29] R. Bukasov and J. S. Shumaker-Parry, “Highly tunable infrared extinction properties of gold nanocrescents.,” Nano letters, vol. 7, no. 5, pp. 1113–8, May 2007.
[30] R. Bukasov and J. S. Shumaker-Parry, “Silver nanocrescents with infrared plasmonic properties as tunable substrates for surface enhanced infrared absorption spectroscopy.,” Analytical chemistry, vol. 81, no. 11, pp. 4531–5, Jun. 2009.
[31] 曾重賓, “氧電漿輔助奈米球微影術之研究與應用,” 國立成功大學, 2010.
[32] 鍾昕展, “奈米球鏡微影術製備金屬陣列感測器之應用,” 國立成功大學, 2012.