| 研究生: |
郭宜鑫 Kuo, Yi-Xin |
|---|---|
| 論文名稱: |
藉由移動式噪音量測平台建構一超細懸浮微粒預測模式 A Spatiotemporal Model for Predicting Traffic-related Ultrafine Particle Concentration through Mobile Noise Measurements |
| 指導教授: |
林明彥
Lin, Ming-Yeng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 環境醫學研究所 Department of Environmental and Occupational Health |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 懸浮微粒 、超細微粒 、噪音 、交通 、移動式測量 |
| 外文關鍵詞: | Particulate Matter, UFP, Noise, Traffic, Mobile measurement |
| 相關次數: | 點閱:80 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
交通排放為超細懸浮微粒(粒徑<100 nm)主要來源,居住於鄰近交通頻繁地區可能對人體產生呼吸道疾病或心血管疾病等健康危害,然而用來監測超細懸浮微粒濃度之儀器通常價格昂貴且笨重,尋找便宜且方便之替代測量方式有其必要性。為解決上述問題,本研究除建構一移動式量測平台(mobile platform)探討大氣中懸浮微粒之時空分布組成特徵外,亦結合噪音、氣象及地理資訊建立一超細微粒濃度預測模型(UFP predict model)。
為獲得高時間及空間解析度之空氣污染物分布情形,本研究以移動式量測平台搭載高時間解析度儀器(快速微粒電動度粒徑分析儀、氣動粒徑分析儀、奈米微粒表面積分析儀、氣膠監視量測儀、超細微粒計數器、多環芳香烴分析儀、音頻分析儀),量測受台中港工業區影響之沙鹿、龍井、梧棲其PM2.5、超細微粒及多環芳香烴等空氣污染物濃度,採樣時程共分為四個季節(秋、冬、春、夏),各季節之採樣至少約1個禮拜,採樣時間為早上(7:00-10:00 AM)與晚上(18:00-21:00 PM),超細微粒預測模型則以廣義相加模型(Generalized additive model)進行建模。
研究結果顯示超細微粒數目濃度、多環芳香烴等懸浮微粒濃度指標顯著受時間與空間變異所影響(p<0.001),此外,本研究所建立之超細微粒預測模型其解釋力及決定係數(R2)分別高達80%和0.77,即本研究所建構之超細微粒預測方程式能有效預測台中地區之超細微粒濃度,並提供較便宜且迅速之方式獲得大氣中超細微粒濃度,量測結果將可結合流行病學研究及健康危害風險評估技術,以瞭解居民之主要暴露來源。
Vehicle emissions are the main source of ultrafine particles (UFP, diameter < 100 nm). People living in near roadway have increased respiratory diseases and cardiovascular mortalities. However, most of the UFP concentration measurement instruments are expensive and bulky. To solve the problems, we used a mobile platform measurement to build a UFP prediction model with noise, geographical and meteorological data.
To obtain the spatial and temporal resolution of air pollutants, we constructed a mobile platform equipped with high resolution monitoring instruments (FMPS, APS, NSAM, DustTrak, P-TRAK, PAS, Sound Analyzer) to measure PM2.5, ultrafine particle (UFP), and polycyclic aromatic hydrocarbons (PAHs) concentrations around Taichung Harbor Industrial Area (Shalu, Longjing, Wuci). Sampling was conducted during morning (7:00-10:00 AM) and evening (18:00-21:00 PM) on both weekdays and weekends in each season. We proposed a generalized additive model to predict UFP number concentration in the study area.
The result indicates that most of daytime air pollution indicators were significantly influenced by temporal and spatial variations (p<0.001). In addition, the proposed model can explain 80% of deviance and has coefficient of determination (R2) of 0.77. Furthermore, the developed UFP model can predict UFP concentrations precisely and conveniently in Taichung. Besides, the results from this study could also be applied for epidemiology studies and health risk assessments.
Achilleos S, Evans JS, Yiallouros PK, Kleanthous S, Schwartz J, Koutrakis P. 2014. Pm10 concentration levels at an urban and background site in cyprus: The impact of urban sources and dust storms. Journal of the Air & Waste Management Association 64:1352-1360.
Allen RW, Adar SD. 2011. Are both air pollution and noise driving adverse cardiovascular health effects from motor vehicles? Environmental Research 111:184-185.
Bukowiecki N, Dommen J, Prévôt ASH, Weingartner E, Baltensperger U. 2003. Fine and ultrafine particles in the zürich (switzerland) area measured with a mobile laboratory: An assessment of the seasonal and regional variation throughout a year. Atmos Chem Phys 3:1477-1494.
Can A, Rademaker M, Van Renterghem T, Mishra V, Van Poppel M, Touhafi A, et al. 2011. Correlation analysis of noise and ultrafine particle counts in a street canyon. Science of The Total Environment 409:564-572.
Cao J. 2013. Evolution of pm2.5 measurements and standards in the u.S. And future perspectives for china. Aerosol and Air Quality Research.
Carslaw DC, Beevers SD, Tate JE. 2007. Modelling and assessing trends in traffic-related emissions using a generalised additive modelling approach. Atmospheric Environment 41:5289-5299.
Chalupa DC, Morrow PE, Oberdörster G, Utell MJ, Frampton MW. 2004. Ultrafine particle deposition in subjects with asthma. Environmental Health Perspectives 112:879-882.
Chang C-C, Chen C-Y, Chiu H-F, Dai S-X, Liu M-Y, Yang C-Y. 2011. Elastases from inflammatory and dendritic cells mediate ultrafine carbon black induced acute lung destruction in mice. Inhalation toxicology 23:616-626.
Chen W-T. 2015. Development of a mobile measurement platform for characterizing the spatial and temporal distribution of particulate matters. Taiwan:National Cheng Kung University, Department of Environmental and Occupational Health Medical Colleage.
Chuang KJ, Chan CC, Su TC, Lee CT, Tang CS. 2007. The effect of urban air pollution on inflammation, oxidative stress, coagulation, and autonomic dysfunction in young adults. American journal of respiratory and critical care medicine 176:370-376.
Dekoninck L, Botteldooren D, Int Panis L. 2013. An instantaneous spatiotemporal model to predict a bicyclist's black carbon exposure based on mobile noise measurements. Atmospheric Environment 79:623-631.
Dekoninck L, Botteldooren D, Int Panis L. 2015a. Using city-wide mobile noise assessments to estimate bicycle trip annual exposure to black carbon. Environment International 83:192-201.
Dekoninck L, Botteldooren D, Panis LI, Hankey S, Jain G, S K, et al. 2015b. Applicability of a noise-based model to estimate in-traffic exposure to black carbon and particle number concentrations in different cultures. Environment International 74:89-98.
Donaldson K, Stone V, Gilmour PS, Brown DM, MacNee W. 2000. Ultrafine particles: Mechanisms of lung injury. Philosophical Transactions: Mathematical, Physical and Engineering Sciences 358:2741-2749.
Donaldson K, Brown D, Clouter A, Duffin R, MacNee W, Renwick L, et al. 2002. The pulmonary toxicology of ultrafine particles. Journal of aerosol medicine 15:213-220.
Farrell W, Weichenthal S, Goldberg M, Valois M-F, Shekarrizfard M, Hatzopoulou M. 2016. Near roadway air pollution across a spatially extensive road and cycling network. Environmental Pollution 212:498-507.
Fung DC, Zhang Q, Hinds WC, Zhu Y. 2013. Particle concentration on freeways: Affecting factors and a simple model development. Aerosol and Air Quality Research 13:1693-1701.
Gao J, Wang J, Cheng S-h, Xue L-k, Yan H-z, Hou L-j, et al. 2007. Number concentration and size distributions of submicron particles in jinan urban area: Characteristics in summer and winter. Journal of Environmental Sciences 19:1466-1473.
Guaita R, Pichiule M, Maté T, Linares C, Díaz J. 2011. Short-term impact of particulate matter (pm2.5) on respiratory mortality in madrid. International Journal of Environmental Health Research 21:260-274.
Hagler GS, Lin M-Y, Khlystov A, Baldauf RW, Isakov V, Faircloth J, et al. 2012. Field investigation of roadside vegetative and structural barrier impact on near-road ultrafine particle concentrations under a variety of wind conditions. Science of the Total Environment 419:7-15.
Halonen JI, Lanki T, Yli-Tuomi T, Tiittanen P, Kulmala M, Pekkanen J. 2009. Particulate air pollution and acute cardiorespiratory hospital admissions and mortality among the elderly. Epidemiology 20:143-153.
Hankey S, Marshall JD. 2015. Land use regression models of on-road particulate air pollution (particle number, black carbon, pm2. 5, particle size) using mobile monitoring. Environmental science & technology 49:9194-9202.
Harrison RM, Giorio C, Beddows DCS, Dall'Osto M. 2010. Size distribution of airborne particles controls outcome of epidemiological studies. Science of The Total Environment 409:289-293.
Hastie T, Tibshirani R. 1986. Generalized additive models. Statistical Science 1:298-318.
Heinrich J, Slama R. 2007. Fine particles, a major threat to children. International Journal of Hygiene and Environmental Health 210:617-622.
Hinds WC. 1999. Aerosol technology : Properties, behavior, and measurement of airborne particles.
Hoek G, Boogaard H, Knol A, De Hartog J, Slottje P, Ayres JG, et al. 2010. Concentration response functions for ultrafine particles and all-cause mortality and hospital admissions: Results of a european expert panel elicitation. Environmental science & technology 44:476-482.
Hoek G, Beelen R, Kos G, Dijkema M, Zee SCvd, Fischer PH, et al. 2011. Land use regression model for ultrafine particles in amsterdam. Environmental science & technology 45:622-628.
Hsu C-Y, Lin M-Y, Chiang H-C, Chen M-J, Lin T-Y, Chen Y-C. 2016. Using a mobile measurement to characterize number, surface area, and mass concentrations of ambient fine particles with spatial variability during and after a pm episode. Aerosol and Air Quality Research 16:1416-1426.
Hu S, Paulson SE, Fruin S, Kozawa K, Mara S, Winer AM. 2012. Observation of elevated air pollutant concentrations in a residential neighborhood of los angeles california using a mobile platform. Atmospheric Environment 51:311-319.
Isakov V, Touma J, Touma J, Khlystov A, Sattler M, Devanathan S, et al. 2007. A method of assessing air toxics concentrations in urban areas using mobile platform measurements. Journal of the Air & Waste Management Association 57:1286-1295.
Jensen SS. 2006. A gis-gps modeling system for personal exposure to traffic air pollution. Epidemiology 17:S38.
Keuwlsoft. 2014. Spectrum analyser. Available: http://www.keuwl.com/SpectrumAnalyser/.
Khlystov A, Ma Y. 2006. An on-line instrument for mobile measurements of the spatial variability of hexavalent and trivalent chromium in urban air. Atmospheric Environment 40:8088-8093.
Kim K-H, Kabir E, Kabir S. 2015. A review on the human health impact of airborne particulate matter. Environment International 74:136-143.
Kittelson DB, Watts W, Johnson J. 2004. Nanoparticle emissions on minnesota highways. Atmospheric Environment 38:9-19.
Klæboe R, Kolbenstvedt M, Clench-Aas J, Bartonova A. 2000. Oslo traffic study – part 1: An integrated approach to assess the combined effects of noise and air pollution on annoyance. Atmospheric Environment 34:4727-4736.
Kolb CE, Herndon SC, McManus JB, Shorter JH, Zahniser MS, Nelson DD, et al. 2004. Mobile laboratory with rapid response instruments for real-time measurements of urban and regional trace gas and particulate distributions and emission source characteristics. Environmental science & technology 38:5694-5703.
Kristensson A, Johansson C, Westerholm R, Swietlicki E, Gidhagen L, Wideqvist U, et al. 2004. Real-world traffic emission factors of gases and particles measured in a road tunnel in stockholm, sweden. Atmospheric Environment 38:657-673.
Kumar P, Fennell P, Langley D, Britter R. 2008. Pseudo-simultaneous measurements for the vertical variation of coarse, fine and ultrafine particles in an urban street canyon. Atmospheric Environment 42:4304-4319.
Löbig J, Weber S. 2017. Using ambient noise measurements to model urban particle number size distributions at a traffic site. Atmospheric Pollution Research 8:366-373.
Löndahl J, Pagels J, Swietlicki E, Zhou J, Ketzel M, Massling A, et al. 2006. A set-up for field studies of respiratory tract deposition of fine and ultrafine particles in humans. Journal of Aerosol Science 37:1152-1163.
Lanzinger S, Schneider A, Breitner S, Stafoggia M, Erzen I, Dostal M, et al. 2016. Associations between ultrafine and fine particles and mortality in five central european cities — results from the ufireg study. Environment International 88:44-52.
Lin C-C, Chen S-J, Huang K-L, Hwang W-I, Chang-Chien G-P, Lin W-Y. 2005. Characteristics of metals in nano/ultrafine/fine/coarse particles collected beside a heavily trafficked road. Environmental Science & Technology 39:8113-8122.
Lin M-Y, Hagler G, Baldauf R, Isakov V, Lin H-Y, Khlystov A. 2016. The effects of vegetation barriers on near-road ultrafine particle number and carbon monoxide concentrations. Science of The Total Environment 553:372-379.
Liu BYH, Whitby KT, Pui DYH. 1974. A portable electrical analyzer for size distribution measurement of submicron aerosols. Journal of the Air Pollution Control Association 24:1067-1072.
Liu Y, Paciorek CJ, Koutrakis P. 2009. Estimating regional spatial and temporal variability of pm2. 5 concentrations using satellite data, meteorology, and land use information. Environmental health perspectives 117:886.
McMurry PH, Woo KS. 2002. Size distributions of 3–100-nm urban atlanta aerosols: Measurement and observations. Journal of Aerosol Medicine 15:169-178.
Morawska L, Ristovski Z, Jayaratne ER, Keogh DU, Ling X. 2008. Ambient nano and ultrafine particles from motor vehicle emissions: Characteristics, ambient processing and implications on human exposure. Atmospheric Environment 42:8113-8138.
Morelli X, Foraster M, Aguilera I, Basagana X, Corradi E, Deltell A, et al. 2015. Short-term associations between traffic-related noise, particle number and traffic flow in three european cities. Atmospheric Environment 103:25-33.
Nel A, Xia T, Mädler L, Li N. 2006. Toxic potential of materials at the nanolevel. Science 311:622-627.
Oberdörster G. 2001. Pulmonary effects of inhaled ultrafine particles. International archives of occupational and environmental health 74:1-8.
Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Lunts A, et al. 2002. Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. Journal of Toxicology and Environmental Health, Part A 65:1531-1543.
Pearce JL, Beringer J, Nicholls N, Hyndman RJ, Tapper NJ. 2011. Quantifying the influence of local meteorology on air quality using generalized additive models. Atmospheric Environment 45:1328-1336.
Pekkanen J, Kulmala M. 2004. Exposure assessment of ultrafine particles in epidemiologic time-series studies. Scandinavian journal of work, environment & health:9-18.
Perez L, Tobías A, Querol X, Pey J, Alastuey A, Díaz J, et al. 2012. Saharan dust, particulate matter and cause-specific mortality: A case–crossover study in barcelona (spain). Environment International 48:150-155.
Peters A, Veronesi B, Calderón-Garcidueñas L, Gehr P, Chen LC, Geiser M, et al. 2006. Translocation and potential neurological effects of fine and ultrafine particles a critical update. Particle and Fibre Toxicology 3:13.
Peters J, Theunis J, Van Poppel M, Berghmans P. 2013. Monitoring pm10 and ultrafine particles in urban environments using mobile measurements. Aerosol and Air Quality Research 13:509-522.
Pilinis C, Seinfeld JH. 1988. Development and evaluation of an eulerian photochemical gas-aerosol model. Atmospheric Environment (1967) 22:1985-2001.
Pirjola L, Johansson C, Kupiainen K, Stojiljkovic A, Karlsson H, Hussein T. 2010. Road dust emissions from paved roads measured using different mobile systems. Journal of the Air & Waste Management Association 60:1422-1433.
Pope CAI, Ezzati M, Dockery DW. 2009. Fine-particulate air pollution and life expectancy in the united states. New England Journal of Medicine 360:376-386.
Pope IC, Burnett RT, Thun MJ, et al. 2002. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287:1132-1141.
R Core Team. 2016. R: A language and environment for statistical computing. R foundation for statistical computing, vienna, austria. Https://www.R-project.Org/.
Rizza V, Stabile L, Buonanno G, Morawska L. 2017. Variability of airborne particle metrics in an urban area. Environmental Pollution 220:625-635.
Sager TM, Castranova V. 2009. Surface area of particle administered versus mass in determining the pulmonary toxicity of ultrafine and fine carbon black: Comparison to ultrafine titanium dioxide. Particle and fibre toxicology 6:15.
Samet JM, Rappold A, Graff D, Cascio WE, Berntsen JH, Huang Y-CT, et al. 2009. Concentrated ambient ultrafine particle exposure induces cardiac changes in young healthy volunteers. 179:1034-1042.
Samoli E, Peng R, Ramsay T, Pipikou M, Touloumi G, Dominici F, et al. 2008. Acute effects of ambient particulate matter on mortality in europe and north america: Results from the aphena study. Environmental Health Perspectives 116:1480-1486.
San Joaquin Valley Air Pollution Control District. 2012. Particulate matter (pm) sources. Available: http://www.valleyair.org/Home.htm.
Sandberg U, Ejsmont JA. 2002. Tyre/road noise reference book.
Schwarze P, Øvrevik J, Låg M, Refsnes M, Nafstad P, Hetland R, et al. 2006. Particulate matter properties and health effects: Consistency of epidemiological and toxicological studies. Human & experimental toxicology 25:559-579.
Scungio M, Arpino F, Stabile L, Buonanno G. 2013. Numerical simulation of ultrafine particle dispersion in urban street canyons with the spalart-allmaras turbulence model. Aerosol Air Qual Res 13:1423-1437.
Shi Y, Lau KK-L, Ng E. 2016. Developing street-level pm2. 5 and pm10 land use regression models in high-density hong kong with urban morphological factors. Environmental science & technology 50:8178-8187.
Shu S, Yang P, Zhu Y. 2014. Correlation of noise levels and particulate matter concentrations near two major freeways in los angeles, california. Environmental Pollution 193:130-137.
Soo J-C, Tsai P-J, Lee S-C, Lu S-Y, Chang C-P, Liou Y-W, et al. 2010. Establishing aerosol exposure predictive models based on vibration measurements. Journal of Hazardous Materials 178:306-311.
Steinle S, Reis S, Sabel CE. 2013. Quantifying human exposure to air pollution--moving from static monitoring to spatio-temporally resolved personal exposure assessment. Sci Total Environ 443:184-193.
USEPA. 2015. Available: https://www.epa.gov/research-grants.
Van Poppel M, Peters J, Bleux N. 2013. Methodology for setup and data processing of mobile air quality measurements to assess the spatial variability of concentrations in urban environments. Environmental Pollution 183:224-233.
Weber S. 2009. Spatio-temporal covariation of urban particle number concentration and ambient noise. Atmospheric Environment 43:5518-5525.
Weber S, Kordowski K, Kuttler W. 2013. Variability of particle number concentration and particle size dynamics in an urban street canyon under different meteorological conditions. Science of the Total Environment 449:102-114.
Weichenthal S, Van Ryswyk K, Goldstein A, Shekarrizfard M, Hatzopoulou M. 2016. Characterizing the spatial distribution of ambient ultrafine particles in toronto, canada: A land use regression model. Environmental Pollution 208:241-248.
Weijers EP, Khlystov AY, Kos GPA, Erisman JW. 2004. Variability of particulate matter concentrations along roads and motorways determined by a moving measurement unit. Atmospheric Environment 38:2993-3002.
Westerdahl D, Fruin S, Sax T, Fine PM, Sioutas C. 2005. Mobile platform measurements of ultrafine particles and associated pollutant concentrations on freeways and residential streets in los angeles. Atmospheric Environment 39:3597-3610.
Whitby KT, Husar RB, Liu BYH. 1972. The aerosol size distribution of los angeles smog. Journal of Colloid and Interface Science 39:177-204.
Wilson WE, Chow JC, Claiborn C, Fusheng W, Engelbrecht J, Watson JG. 2002. Monitoring of particulate matter outdoors. Chemosphere 49:1009-1043.
Wood SN. 2006. Generalized additive models: An introduction with r (chapman & hall/crc, boca raton, florida).
Xu J, Wang A, Hatzopoulou M. 2016. Investigating near-road particle number concentrations along a busy urban corridor with varying built environment characteristics. Atmospheric Environment 142:171-180.
Zhao L, Wang X, He Q, Wang H, Sheng G, Chan L, et al. 2004. Exposure to hazardous volatile organic compounds, pm 10 and co while walking along streets in urban guangzhou, china. Atmospheric Environment 38:6177-6184.
Zhu Y, Hinds WC, Kim S, Sioutas C. 2002. Concentration and size distribution of ultrafine particles near a major highway. Journal of the air & waste management association 52:1032-1042.
Zhu Y, Hinds WC, Shen S, Sioutas C. 2004. Seasonal trends of concentration and size distribution of ultrafine particles near major highways in los angeles special issue of aerosol science and technology on findings from the fine particulate matter supersites program. Aerosol Science and Technology 38:5-13.
Ziehn T, Tomlin AS. 2009. Gui–hdmr–a software tool for global sensitivity analysis of complex models. Environmental Modelling & Software 24:775-785.
校內:2022-09-01公開