簡易檢索 / 詳目顯示

研究生: 林連捷
Lin, Lien-Chieh
論文名稱: 一些非線性系統的精確旅行波解的讀書心得
A Note on Exact Traveling Wave Solutions for SomeNonlinear Systems
指導教授: 方永富
Fang, Yung-fu
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 62
中文關鍵詞: Zakharov方程組Quantum Zakharov方程組KdV方程組Riccati方程組Kawahara方程Boussinesq方程tanh法
外文關鍵詞: Zakharov system, Quantum Zakharov system, KdV equation, Riccati equation, Kawahara PDE, Boussinesq equation, Tanh function method
相關次數: 點閱:202下載:27
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們仔細研讀了S.A. El-Wakil及 M.A. Abdou 教授發表的論文"New exact travelling wave solutions of two nonlinear physical models" 還有王明亮、王躍明、張金良教授共同發表的論文"The periodic wave solutions for two systems of nonlinear wave equations" 然後探討文章內所使用的方法並加以應用。
    在這篇論文中,我們介紹了幾種不同的偏微分方程,然後再以一種改進的tanh函數方法與計算機符號計算去找這些非線性系統的精確旅行波解,包括Zakharov 方程組、KdV 方程組...等,以及Quantum Zakharov 方程組的近似解。 然後代入一些參數,再將其解的圖形用Mathematica畫出,這些告訴我們方程式有不同類型的解,他們有其代表的物理意義,過程中我們會認識更多偏微分方程之間的共通性,在推導的過程上也會詳細的描述和介紹。
    該方法的主要思想是充分利用Riccati方程的家族解,去獲得了精確的解,包括新的類孤子解,三角函數解和有理解。最後在補充了一些作者沒有寫出來的解,並修正維基百科上的錯誤,讓結果更加完整。

    We mainly study two papers "New exact travelling wave solutions of two nonlinear physical models" written by S.A. El-Wakil and M.A. Abdou and "The periodic wave solutions for two systems of nonlinear wave equations" written by Wang Ming-Liang, Wang Yue-Ming, and Zhang Jin-Liang , then we explore the methods used in the article and use them to find the exact traveling wave solutions of some partial differential equations.
    In this paper,we introduced several different partial differential equations, and use an improved tanh function method and computer symbolic calculation to find exact travelling wave solutions for some nonlinear systems, including Zakharov equations, KdV equations ... etc, and the approximate solution of Quantum Zakharov equations. Then substitute some proper parameters, and then use the Mathematica to draw the solution graphs. These tell us that the equations have different types of solutions and they have their own physical meanings. In the process, we will learn more about the commonalities between partial differential equations, and we will describe and introduce them in detail in the derivation process.
    The main idea of this method is to take full advantage of the family of Riccati equation which has more solutions. The exact solutions obtained are including new soliton-like solutions, trigonometric function solutions, and rational solutions. Finally, I added some solutions that the author did not presented, and corrected some errors on Wikipedia to make the results more complete.

    1 Introduction -----------------------------------------1 1.1 Zakharov system ------------------------------------1 1.2 Quantum Zakharov system ----------------------------2 1.3 KdV equation ---------------------------------------3 1.4 Kawahara PDE ---------------------------------------3 1.5 Boussinesq equation --------------------------------4 1.6 Riccati equation -----------------------------------4 2 Preliminaries and Tanh function method ---------------5 2.1 Preliminaries and Notations ------------------------5 2.2 Riccati equation -----------------------------------7 2.3 Soliton and Tanh function method ------------------11 2.4 Soliton and the F-expansion method ----------------13 2.5 Soliton and the improved F-expansion method -------15 3 Zakharov system -------------------------------------17 4 Quantum Zakharov system -----------------------------24 5 KdV equation ----------------------------------------38 6 Kawahara PDE ----------------------------------------49 7 Boussinesq equation ---------------------------------56 References --------------------------------------------61

    [1] Abramowitz, M. and Stegun, I. A. (Eds.), Jacobian Elliptic Functions and Theta Functions. Ch.16 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 567-581, (1972).
    [2] A.M. Wazwaz, The tanh-coth method combined with the Riccati equation for solving the KdV equation,AJMMS 1 (1) (2007) 27–34.
    [3] Darrigol, O., Worlds of Flow: A History of Hydrodynamics from the Bernoullis to Prandtl, Oxford University Press(2005).
    [4] David Betounes, Partial Differential Equations for Computational Science: With Maple and Vector Analysis Springer, (1998).
    [5] Dongming Wang, Elimination Practice, Imperial College Press (2004).
    [6] Eryk Infeld and George Rowlands, Nonlinear Waves, Solitons and Chaos, Cambridge (2000).
    [7] George Articolo Partial Differential Equations & Boundary Value Problems with Maple V Academic Press (1998).
    [8] Graham W.Griffiths William E.Schiesser Traveling Wave Analysis of Partial Differential Equations (2010) .
    [9] Hazewinkel, Michiel, ed., ”Riccati equation”, Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers (2001)[1994].
    [10] Inna Shingareva, Carlos Lizarraga-Celaya, Solving Nonlinear Partial Differential Equations with Maple and Mathematica , Springer.
    [11] J. Boussinesq, Thorie de l’intumescence liquide, applele onde solitaire ou de translation, se propageant dans un canal rectangulaire, Comptes Rendus de l’Académie des Sciences, vol. 72, pp. 755–759, (1871).
    [12] Ming-Liang Wang, Yue-Ming Wang and Jin-Liang Zhang, The periodic wave solutions for two systems of nonlinear wave equations. Chin. Phys. Soc. and IOP Publishing Ltd. Vol.12 No.12 (2003), 1341-1348.
    [13] Richard H. Enns George C. McCGuire, Nonlinear Physics Birkhauser,(1997).
    [14] Saber Elaydi, An Introduction to Difference Equationns, Springer (2000).
    [15] S.A. El-Wakil and M.A. Abdou , New exact travelling wave solutions of two nonlinear physical models.ScienceDirect. Nonlinear Analysis 68 (2008), 235-
    245.
    [16] T. Bridges and G. Derks, Linear instability of solitary wave solutions of the Kawahara equation and its generalizations, SIAM J. Math. Anal. 33 (2002), 1356–1378.
    [17] T. Kawahara Oscillatory solitary waves in dispersive media J. Phys. Soc. Jpn., 33 (1972), pp. 260-264
    [18] V.E. Zakharov, Collapse of Langmuir waves. Sov. Phys. JETP 35 (1962), 908-914.
    [19] W.E. Schiesser, G.W. Griffiths, A Compendium of Partial Differential Equation Models, Cambridge University Press, UK, (2009).
    [20] W.Malfliet, Solitary wave solutions of nonlinear wave equation, Am. J. Phys. 60 (7) (1992) 650–654.
    [21] 李志斌編著《非線性數學物理方程的行波解》科學出版社,(2007).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE