| 研究生: |
陳正士 Chen, Cheng-Shi |
|---|---|
| 論文名稱: |
直流式磁控濺鍍鋯基氮碳薄膜機械性質及擴散阻障之研究 Mechanical and Diffusion Barrier Properties of Zr(C,N) Thin Films by DC Magnetron Sputtering |
| 指導教授: |
曹紀元
Tsao, Chi-Yuan Albert 劉全璞 Liu, Chuan-Pu |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 159 |
| 中文關鍵詞: | 擴散阻障 、機械性質 、鋯基氮碳 |
| 外文關鍵詞: | Diffusion Barrier, Mechanical Properties, Zr(C, N) |
| 相關次數: | 點閱:65 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中 文 摘 要
鋯基氮化物、碳化物及氮碳化物,由於它们有獨特優異的性質,包括高硬度、高熔點、耐腐蝕、耐磨耗和低電阻故為科技應用上之重要材料之一。雖然,Zr(C, N)鍍在Si晶片上,主要金屬化的應用是在電子性質上,然而,其機械性質和界面,對於這些元件的製造是相當重要的。基本上,由於ZrN與Si有16%晶格常數不匹配性,而導致與Si有不好的附着性。薄膜的附著性不僅對微電子及磁性記錄工業,且也對經由光學技術之資料傳輸,扮演著一個重要的性質。它可能會由於高的殘留應力而自發性的剝離。實際上,當成長在Si晶片上,新的金屬化材料應該要和Si基材擁有良好的附著力、低的界面應力及良好的機械性質。
在本研究中,首先探討ZrN改變基板偏壓值,調整範圍為Vb = -45 V~ +50V,結果顯示,無論正偏壓或負偏壓,其附著性皆比未加偏壓來得差。另外,正偏壓增加硬度和彈性模數,然而,負偏壓值增加硬度及破壞韌性。對於ZrC薄膜,機械性質的探討,係改變成長溫度,從25℃~290℃。結果顯示,對於Ts = 120℃時,其有最佳的附著性。另外,在較低的成長溫度時,呈現較高的硬度及較小的彈性模數,且其破壞韌性隨著溫度增加而增加;然而,在最高溫Ts = 290℃時,其破壞韌性會有減小之趨勢,且其結構由柱狀晶反而變成細小等軸之奈米晶,而對機械性質如硬度,反而有軟化之趨勢。至於非晶ZrCN薄膜,吾人改變N2/(Ar+N2)比,從0至4.8%。結果指出,當氮氣流量比增加時,硬度及附著力之臨界負荷減少,然而,彈性模數及破壞韌性增加。這些機械性質的變化,與鍵結長度及原子短程有序的程度有關,在本研究中,亦一併討論之。
本研究中第二個主要的主體,是評估ZrN, ZrC及ZrCN薄膜,當擴散阻障之可行性。其結果指出,對於ZrN薄膜,改變基材的溫度,而得到不同的擇優取向,在(111)織構晶粒方向較高的,其擴散阻障能力,較混亂晶粒方位的來得高,因而提出一個 擴散model;另一方面,在本實驗的結果指出,較厚的擴散阻障層,其晶粒較大,亦代表著其晶界較少,且銅的活化能較高,而使得ZrN能在退火800℃時,仍維持擴散阻障之能力。對於在Cu/ZrC/Si系統,主要係因在退火900℃時,Si/ZrC界面形成ZrSi2,而使得Cu沿著局部缺陷,朝向Si基材擴散,且Si沿著Cu擴散後之通道,向銅表層方向擴散,而在其表面上形成Cu3Si,而使得Cu/ZrC/Si系統在900℃時完全失效。最後,吾人亦評估更複雜的三元合金系統,ZrCN薄膜,在整個退火中,ZrCN相無再結晶相發生,而仍維持其穩定的非晶相,且其Cu/ZrCN/Si阻障層系統,能夠維持在800℃之下而無失效,但在900℃時,完全失效,主因係Cu3Si和Cu-Zr-Si化合物的形成所致。
Abstract
Zirconium-based nitride, carbide and Carbonitride are technologically important materials for many applications because of their outstanding properties including hardness, melting point, corrosion resistance and abrasion resistance. Although the primary function of the Zr(C,N) deposited on Si is the electrical property for metallization applications, the mechanical properties and interfaces are crucial to the successful manufacture and applications of these devices. Therefore, thin film practical adhesion is an important property not only for microelectronics and magnetic recording industries, but also for emerging technologies such as data transmission through optical switches, which are dependent on microelectro-mechanical system. It is possible that the films with high residual stress will spontaneously delaminate.
In this study, ZrN films were grown on Si (100) substrates using dc magnetron sputtering where the substrate bias was varied from -45 V to 50 V. The results indicate that the introduction of either negative or positive bias results in the degradation of the practical adhesion properties, while the films under zero bias exhibit the best adhesion. In addition, positive bias results in the increase in both the hardness and elastic modulus, while negative bias enhances the hardness and toughness of the ZrN thin films. ZrC films were also grown on Si (100) substrates using magnetron sputtering where the growth temperature (Ts) was varied from 25 oC to 290 oC. The results indicate that there exists an optimum growth temperature at Ts = 120 oC, at which the film exhibits the best adhesion. In addition, lower growth temperatures result in an increase in hardness and a decrease in modulus, while higher growth temperatures degrade fracture toughness. The film structure reveals a change from columnar to equi-axed nanocrystalline at Ts = 290 oC, which has a profound effect on some of the mechanical properties, such as hardness. The flow ratio of N2 to (Ar+N2) was varied from 0 to 4.8% for the growth of amorphous ZrCN films. The result indicated that increasing nitrogen flow ratio, hardness and critical load decrease while elastic modulus and fracture toughness increase. The mechanical properties can be correlated to bond length and short-range ordering.
As for the evaluation of the ZrN, ZrC and ZrCN as diffusion barriers for the devices, the diffusion coefficient and activation energy of Cu in the ZrN barrier are derived. The results indicate that the thicker (111) oriented crystalline ZrN films with larger grain sizes provide a higher activation energy against Cu diffusion and can act as an excellent diffusion barrier for Cu up to 800˚C. The detailed mechanisms accounted for the better performance are discussed in terms of a proposed grain boundary model. On the other hand, the failure of the Cu/ZrC/Si films is mainly attributed to copper diffusion into Si substrate along the localized defects in the barrier films after the formation of ZrSi2 at the Si/ZrC interface, which provide fast paths for Cu diffusion at 900°C. Accordingly, the complete failure at 900°C results mainly from the formation of Cu3Si and Zr-Si compounds. As for the ZrCN film, the stacked samples were shown to be thermally stable up to about 800°C from Auger electron spectroscopy and x-ray diffraction, where the ZrCN still remains its amorphous phase. The device completely fails at 900°C and the mechanism is discussed in the thesis.
[1] N. Sherwani, Algorithms for VLSI physical Design Automation, 3 rd. Ed., (1999)
[2] Gordon E.Moore, Electronics 38 (1965) 1.
[3] G. S. Chen, D. Y. Lee and S. T. Chen, Thin Solid Films 353 (1999) 234.
[4] S. M. Lee, J. S. Kwak, D. S. Yoon and H. K. Baik, J. Electrochem. Soc. 144 (1997) 1807.
[5] 銅製程之擴散阻障層,吳文發,黃麒峰,毫微米通訊 6(1999) 30.
[6] H. Ono, T. Nakano and T. Ohta, Appl. Phys. Lett. 64 (1994) 1511.
[7] X. Sun, E. Kolawa, J. S. Chen, J.S. Reid and M.-A. Nicolet, Thin Solid Films 236 (1993) 347.
[8] T. Oku, E. Kawakami, M. Uekuo, K. Tajahiro, S. Yamaguchi and M. Murakami, Appl. Surf. Sci. 99(1996) 265.
[9] K. Hieber, Thin Solid Films 24 (1974) 157.
[10] D. S. Yoon and H. K. Baik, J. Appl. Phys. 83 (998) 8074.
[11] P. J. Pokela, C. K. Kwok, E. Kolawa, S. Raud and M.A..Nicolet Appl. Surf. Sci. 53 (1991) 364.
[12] J. O. Olowolafe, J. Li and J. W. Mayer, Appl. Phys. Lett. 58 (1991) 469.
[13] Y. S.Gong, J. C. Lin , C. Lee, Appl. Surf. Sci. 92 (1996) 335.
[14] M. H. Tasi, S. C. Sun, C. P. Lee, H. T. Chiu, C. E. Tasi, S. H. Chuang and S.C. Wu, Thin Solid Films 270 (1995) 531.
[15] J. O. Olowolafe and C. J. Mogab, J. Appl. Phys., 72 (1992) 4099.
[16] B. Methrotra and J. Stimmell, J. Vac. Sci. Technol., B5 (1987) 1736.
[17] K.Wakasugi, M. Tokunaga, T. Sumita, H. Kubota, M. Nagata and Y. Honda, Physica B, 239 (1997) 29.
[18] T. Mashimo, S. Tashiro, M. Nishida, K.Miyahara and E. Eto, Physica B, 239 (1997) 13.
[19] 楊恆傑,國立成功大學材料科學與工程學系,碩士論文 (2002).
[20] A. A. Volinsky, N. R. Moody and W. V. Gerberich, Acta Mater. 50 (2002) 441.
[21] I. Ivanor, P. Kazansky, L. Hultman, I. Petra and J. –E. Sundgren, J. Vac. Sci. Technol. A 12 (1994) 314.
[22] M. –A. Nicolet, Thin Solid Films 52 (1978) 415.
[23] E. Kolawa, J. M. Molarius, C. W. Nich and M. –A. Nicolet, J. Vac. Sci. Technol .A 8 (1990) 3006.
[24] C. L Lin, S. R. Ku and M. C. Chen, J. J. Appl. Phys., 40 (2001) 4181.
[25] J. S. Reid, E. Kolawa, R.P. Ruiz and M.-A. Nicolet, Thin Solid Films.,236 (1993) 319.
[26] J. S. Reid, E. Kolawa, C. M. Garland, M.-A. Nicolet, F. Cardone, D. Gupta and R. P. Ruiz, J. Appl. Phys. 79 (1996) 1109.
[27] J. S. Chen, E. Kolwa, R.P. Ruiz and M.-A. Nicolet, Mater. Res. Soc. Symp. Proc. 300 (1993) 285.
[28] X. Sun, J. S. Reid, E. Kolawa, and M.-A. Nicolet, J. Appl. Phys. 81(1997) 656.
[29] Y. Wang, C. Zhu, Z.Song, Y. Li, Microelect. Eng. 71 (2004) 69.
[30] 李國英主編,表面工程手冊,機械工業出版社,1998年12月,第5篇,第5章。
[31] 許華偉,國立清華大學材料科學與工程學系,博士論文。
[32] 王起明,國立清華大學材料科學與工程學系,碩士論文。
[33] D. S. Rickerby and A. Matthews, Advanced Surface Coatings a Handbook of Surface Engineering, 1991.
[34] 唐偉中 著,薄膜材料製做原理、技術及應用,北京,冶金工業出版社,1998。
[35] 楊耀昇,國立成功大學材料科學與工程學系,博士論文。
[36] C. R. A. Catlow and W. C. Mackrodt, “Advances in Ceramics, V.23, Nonstoichiometric Compound.” The American Ceramics Society, Westerville, Ohio (1987).
[37] E. O. Hall. The deformation and ageing of mild steel:III Discussion of results. Proc. Phys. Soc. Lond. B. 64 (1951) 747.
[38] N.J. Petch, J. Iron Steel Inst. 174 (1953) 25.
[39] H. Conrad, J. Narayan, Scripta Mater. 42 (2000) 1025.
[40] J. SchiØtz, F. D. Di Tolla and K. W. Jacobsen, Nature 391 (1998) 561.
[41] H.Hahn, P. Mondal, K. A. Padmanahhan, Nanostructured Mater. 9 (1997) 603.
[42] C. A. Brookes and R. P. Burnand, “The Science of Hardness and Its Research Application’,edited by J. H. Westbrook and H. Conrad, ASM, U.S. (1973).
[43] M.Ohring, The Materials Science of Thin Films, Academic Press, Inc. (1992).
[44] A. J. Kinloch, Mater.Sci. 15(1980) 2141.
[45] N. A. Ahmed, Ion Plating Developments and Applications, John Wiley and Son Ltd., (1987).
[46] A. G. Enans, J. W. Hutchinson and Y. Wei, Acta Mater. 47 (1999) 4093.
[47] T. Arai, H.Fujita, Thin Solid Films 154 (1987) 387.
[48] P. A. Steinmann, H. E. Hintermann, J. Vac. Sci. Technol. A3 (1985) 2394.
[49] P. J. Burnnett, D.S. Rickerby, Thin Solid Films 154 (1987) 403.
[50] T. Xie, H. M. Hawthorne, Surf. Coat. Technol. 155 (2002) 121.
[51] J. Li, A. Dasgupta, IEEE Trans. Reliability 43 (1994) 2.
[52] S. J. Wang, H. Y. Tsai, S. C. Sun, Thin Solid Films 394 (2000) 180.
[53] J. Imahori, T. Oku and M. Murakam, Thin Solid Films 301 (1997) 142.
[54] H. Jeong, Kwon and K. Won, Acta Materia., 47 (1999) 3965.
[55] L.Krusin-Elbaum, M. Wittmer, C. Y. Ting, J. J. Cuomo, Thin Solid Films 104, (1983) 81.
[56] M. Ostling, S. Nygren, C. S. Petersson, R. Buchta, H.-O. Blom, S. Berg, Thin Solid Films 145 (1986) 81.
[57] M. B. Takeymam, T. Itoi, E. Aoyagi, A. Noya, Appl. Surf. Sci. 190 (2002) 450.
[58] C. S. Chen, C. P. Liu, H. G. Yang and C. Y. A. Tsao, J. Vac. Technol. B 22 (2004) 1075.
[59] S. Horita, M.Kobayashi, H. Akahori, T. Hata, Surf. Coat. Technol. 66 (1994) 318.
[60] U. K.Wiiala, I. M. Penttinen, A. S. Korhonen, Surf. Coat. Technol. 41 (1990) 191.
[61] P. Panjan, B. Navinsek, A. Zabkar, D. Mandrino, J. Fiser, Thin Solid Films 228 (1993) 233
[62] W. J. Chou, G. P. Yu, J. H. Huang, Thin Solid Films 405 (2002)162.
[63] J. Valli, U. Makela, A. Matthews and Murawa, J. Vac. Sci. Technol. A 3 (1985) 2411.
[64] W. D. Sproul, J. Vac. Sci. Technol. A 4 (1986) 2874.
[65] B. R. Lawn, A. G. Evans, D. B. Marshall, J. Am. Ceram. Soc. 63 (1980) 574.
[66] S. J. Bull, Surf. Coat. Technol. 50 (1991) 25.
[67] P. Patsalas, C. Charitidis, S. Logothetidis Surf. Coat. Technol. 125 (2000) 335.
[68] Kelesoglu and C. Mitterer, Surf. Coat. Technol. 116 (1999)133.
[69] K. J. Ma, A. Bloyce, T. Bell, Surf. Coat. Technol. 76/77 (1995) 297.
[70] C. W. Jennings, J. Adhesion 4 (1972) 25.
[71] S. A. Barnett and L. Hultman, Appl. Phys. Lett. 53 (1988) 400.
[72] H. Yanagisawa and K. Sasaki, Jpn. J. Appl. Phys. 39 (2000) 5987.
[73] D.Gupta, Mater. Chem. and Phys. 41 (1995) 199.
[74] T. Xie, W. A. Mackie, P. R. Davis, J. Vac. Technol. B 14 (1996) 2090.
[75] S. Mecabih, N. Amrane, Z. Nabi, B. Abbar, H. Aourag, Phys. A 285 (2000) 392.
[76] L. E. Toth, In: J. L. Margrave (Ed.), Refractory Materials, Vol. 7, Acdemic press, New York-London, 1971, p.141.
[77] K. Minato, T. Ogawa, K. Fukuda, H. Sekino, Y. Nozawa, I. Takahashi, J. Nucl. Mater. 224 (1995) 85.
[78] K. Minato, K. Fukuda, H. Sekino, A. Ishikawa, E. Oeda, J. Nucl. Mater. 252 (1998) 13.
[79] W.A. Mackie, P. R. Davis, IEEE Trans. Electron Devices 36 (1989) 220.
[80] K. Minato, T. Ogawa, T.Koya, H. Sekino, T. Tomita, J. Nucl. Mater. 279 (2000) 181.
[81] Q. Zhang, J. He, W. Liu, M. Zhong, Surf. Coat. Technol. 162 (2003) 140.
[82] H. Berndt, A.-Q. Zeng, H.-R. Stock, P. Mayer, Surf. Coat. Technol. 74/75 (1995) 369.
[83] L.D’Alessio, R. Teghil, M. Zaccagnino, I. Zaccardo, V. Marotta, D. Ferro, G. D. Maria, A. Santagata, Appl. Surf. Sci. 168 (2000) 284.
[84] W. A. Mackie, T. Xie, P. R. Davis, J. Vac. Sci. Technol. B 13 (1995) 2459.
[85] P. R. Willmott, H. Spillmann, Appl. Surf. Sci. 197/198 (2002) 432.
[86] I. Petrov, P. B. Barna, L. Hultman, J. E. Greene, J. Vac. Sci. Technol. A 21 (2003) 117.
[87] P. B. Barna, M. Adamik, Thin Solid Films 317 (1998) 27.
[88] H. Hatherly, W. B. Hutchinson, An Introduction to Textures in Metals, Chamcleon Press, London, 1979.
[89] G.E. Fougere, L. Riester, M. Ferber, J. R. Weertman, R. W. Siegel, Mater. Sci. Eng. A 204 (1995) 1.
[90] P. G.Sanders, J. A. Eastman, J. R. Weertman, Acta Mater. 45 (1997) 4019.
[91] T. D. Shen, C. C. Koch, T. Y. Tsui, G. M. Pharr, J. Mater. Res. 10 (1995) 2892.
[92] K. H. Min, K. C. Chun and K. B. Kim, J. Vac. Technol. B 14 (1996) 3263.
[93] D. J. Kim, Y. B. Jung, M. B. Lee, Y. H. Lee and J. H. Lee, Thin Solid Films 372 (2000) 276.
[94] K. –M. Chung and T. –H. Yeh, J. Appl. Phys. 82 (1997) 1469.
[95] S. J. Wang, H. Y. Tsai and S. C. Sun, Jpn. J. Appl. Phys. 40 (2001) 2642.
[96] S. J. Wang, H. Y. Tsai and S. C. Sun, J. Electrochem. Soc.148 (2001) 563.
[97] K. Bahumurthy and R. Schmid-Fetzer, Scripta Mater. 45 (2001) 547.
[98] K. Vieregge and D. Gupta, Proc. Symp. Refractory Metals Committee, ed. A.Crowson and E. S. Chen (New Orleans, LA:The Minerals, Metals and Materials Society, 1991), pp. 231.
[99] L.G. Harrison , Trans. Faraday Soc. 57 (1961) 1191.
[100] H. Holleck, J. Vac. Sci. Technol. A, 4 (1986) 2661.
[101] X. Y. Li, G. B. Li, F. J. Wang and T. C. Ma, Vacuum, 43 (1992) 653.
[102] J. A. Sue, H. H. Troue, Surf. Coat. Technol., 49 (1991) 31.
[103] C. S. Chen, C. P. Liu, H. G. Yang, C.Y.A Tsao, Scripta Mater. 51 (2004)715.
[104] S. Kudapa, K. Narasimhan, P. B.oppana, W. C. Russell, Surf. Coat. Technol.120-121 (1999) 259.
[105] F. Hollstein, D. Kitta, P. Louda, J. Meinhardt, Surf. Coat. Technol. 142-144 (2001)1063.
[106] L. Albert, D. Boscarino, A. Patell, V. Rigato, H. Ahn, Surf. Coat. Technol. 169-170 (2003)388.
[107] M. Sicha, Z. Hubicka, L. Soukup, L. Jastrabik, Surf. Coat. Technol. 148 (2001)199.
[108] C. S. Montross, J. Euro. Ceram. Soc 18 (1997) 353.
[109] P. N. Kapoor, R. Kakkar, Theochem, 679 (2004) 149.
[110] X. Jiang, M. Wang, K. Schmidt, E. Dunlop, J. Haupt, J. Appl. Phys. 69 (1991) 3053.
[111] J. E. Sundgren, Thin Solid Films 128 (1985) 21.
[112] F. James and Shackelford, Introduction to Materials Science for Engineers 3 rd Ed., New York, 1992.
[113] S. H. Jhi, J. Ihm, S. G. Louie, M. L. Cohen, Nature 399 (1999) 132.
[114] E. Kim, C. Chen, Phys. Lett. A 282 (2001) 415.
[115] R. B. Nicholson, G. Thomas, J. Nutting, Acta Metall. 8 (1960) 172.
[116] E. Kolawa, P. J. Pokela. Reid, J. S. Chen, R. P. Ruiz, M. -A. Nicolet, IEEE Electron Device Lett. 12 (1991) 321.
[117] M. S. Angyal, Y. Shacham-Diamand, J. S. Reid, M.-A. Nicolet, Appl. Phys. Lett. 67 (1995) 2152.
[118] X. P. Qu, H. Lu, T. Peng, G. P. Ru, B. Z. Li, Thin Solid Films 462-463 (2004) 67.
[119] M. B. Takeyama, T. Itoi, E. Aoyagi, A. Noya, Appl. Surf. Sci. 216 (2003) 181.
[120] J. L. Liotard, D. Grupta, and P. A. Psaras, J. Appl. Phys. 57 (1985) 1895.
[121] J. Li. J. W. Strane and S. W. Russell, J. Appl. Phys. 72 (1992) 2810.
[122] T. Yamauchi, S. Zaima and K. Mizuno, J. Appl. Phys. 69 (1990) 7050.