簡易檢索 / 詳目顯示

研究生: 涂逸祥
Tu, I-Hsiang
論文名稱: 以歪斜光線分析與設計複合稜鏡
Analysis and design of compound prisms based on skew-ray tracing method
指導教授: 林昌進
Lin, Psang Dain
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 59
中文關鍵詞: 歪斜光線複合稜鏡非線性度光譜色散
外文關鍵詞: skew-ray tracing, compound dispersion prism, dispersion prism, deviation angle
相關次數: 點閱:109下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以齊次座標轉換和平面邊界的歪斜光線第一與第二階微分,對三維複合稜鏡作分析與設計。稜鏡作分析方面,本研究探討了由Hagen與Tkaczyk提出之複合稜鏡,其複合稜鏡類型皆為直視稜鏡。直視稜鏡有幾個重要參數,如波長與偏向角,本文比較其微分之後的結果,藉此了解不同複合稜鏡的性質。
    目前文獻只有二維複合稜鏡的設計方法,三維複合稜鏡的設計方法還沒有被提出,因此本文就三維稜鏡的設計提出一套數學方法,利用光波長與偏向角當成最佳化函數,再計算其第一與第二階微分,用最佳化程式得到稜鏡的頂角,並且舉了四個例子,分別為:消色差稜鏡,直視稜鏡,無偏移直視稜鏡,以證明其可行性。我們發現三維稜鏡可以用更少的元件就達到二維稜鏡的功能,而且效能並沒有輸給二維稜鏡,除此之外,利用柯西方程式取代阿貝數的計算,在光譜色散與非線性度的結果上也可以使誤差更小更精確。

    SUMMARY

    Compound prism is very common in the optical instrument. Therefore it is important to know the property of the compound prism. In order to analyze such prisms, in this thesis we use skew-ray tracing method to determine the derivatives of the deviation angle with respect to wave length. Furthermore, we design a 3-D dispersion prism using the first-order and second-order derivatives matrices of a skew ray. It is found that a single 3-D dispersion prism can achieve the function of a 2-D compound dispersion prism without sacrifice its performance.

    Key words: skew-ray tracing;compound dispersion prism;dispersion prism;deviation angle

    目錄 口試委員會審定書 # 中文摘要 i 英文摘要 ii 目錄 vii 圖目錄 x 表目錄 xiii 第1章 緒論 1 1.1 前言與研究動機 1 1.2 直視稜鏡與消色差稜鏡介紹 2 1.2.1 三角稜鏡Triangular prism 3 1.2.2 阿米西稜鏡Amici prism 3 1.2.3 雙阿米西稜鏡Double Amici prism 4 1.2.4 消色差稜鏡Achromatic prism 5 第2章 歪斜光線追蹤法 6 2.1 點光源 6 2.2 齊次座標轉換 7 2.2.1 平移座標轉換矩陣 8 2.2.2 旋轉座標轉換矩陣 8 2.3 旋轉曲面參數式與其歪斜光線追蹤 10 2.4 平面邊界面的歪斜光線追蹤 15 2.5 歪斜光線對系統變數的Jacobian 與 Hessian矩陣 17 2.6 複合稜鏡的偏差角與光譜色散 20 第3章 直視稜鏡分析 24 3.1 Kessler 稜鏡 24 3.1.1 稜鏡設計計算 25 3.1.2 偏向角和波長關係圖 26 3.1.3 射出光線對系統與光源參數的微分 28 3.2 Sherman 直視稜鏡 29 3.2.1 稜鏡設計計算 29 3.2.2 偏向角和波長關係圖 30 3.3 新Kessler稜鏡 32 3.3.1 稜鏡設計計算 32 3.3.2 偏向角和波長關係圖 33 3.4 兩30°稜鏡組成之序列稜鏡組 35 3.4.1 稜鏡設計計算 35 3.4.2 偏向角和波長關係圖 36 3.5 兩30°稜鏡與一三角稜鏡組成之序列稜鏡組 37 3.5.1 稜鏡設計計算 38 3.5.2 偏向角和波長關係圖 38 3.6 兩60°稜鏡組成之序列稜鏡組 40 3.6.1 稜鏡設計計算 40 3.6.2 分離角和波長關係圖 41 3.7 兩60°稜鏡與一三角稜鏡組成之序列稜鏡組 42 3.7.1 稜鏡設計計算 43 3.7.2 偏向角和波長關係圖 43 第4章 直視稜鏡與消色差稜鏡的設計 45 4.1 Hagen與Tkaczyk提出之複合稜鏡設計 45 4.2 新型複合稜鏡設計 45 4.3 複合稜鏡設計案例1 46 4.4 複合稜鏡設計案例2 49 4.5 複合稜鏡設計案例3 51 4.6 複合稜鏡設計案例4 53 第5章 結論 56 5.1 結論 56 參考文獻 57

    參考文獻

    [1] N. Hagen and T. S. Tkaczyk, “Compound prism design principles, I,” Appl. Opt. 50, 4998–5011 (2011).
    [2] N. Hagen and T. S. Tkaczyk, “Compound prism design principles, II: triplet and Janssen prisms,” Appl. Opt. 50, 5012–5022 (2011).
    [3] N. Hagen and T. S. Tkaczyk, “Compound prism design principles, III: linear-in-wavenumber and optical coherence tomography prisms,” Appl. Opt. 50, 5023–5030 (2011).
    [4] M. V. R. K. Murty, A. L. Narasimham, "Some New Direct Vision Dispersion Prism Systems," Appl. Opt. 9, 859-862 (1970);
    [5] http://en.wikipedia.org/wiki/Cauchy's_equation.
    [6] PD Lin, New computation methods for geometrical optics, (Springer Singapore, 2013), ISBN:978-981-4451-78-9.
    [7] B. D. Stone, "Determination of initial ray configurations for asymmetric systems," J. Opt. Soc. Am. A 14, 3415–3429 (1997).
    [8] R. Shi and J. Kross, “Differential ray tracing for optical design,” Proceedings of SPIE, the International Society for Optical Engineering, ISSN 0277-786X, 3737, 149-160 (1999).
    [9] T. B. Andersen, “Optical aberration functions: derivatives with respect to axial distances for symmetrical systems,” Appl. Opt. 21,1817-1823 (1982).
    [10] T. B. Andersen, “Optical aberration functions: derivatives with respect to surface parameters for symmetrical systems, “ Appl. Opt. 24, 1122-1129 (1985).
    [11] D. P. Feder, “Calculation of an optical merit function and its derivatives with respect to the system parameters,” J. Opt. Soc. Am. A 47, 913-925 (1957).
    [12] D. P. Feder, “Differentiation of ray-tracing equations with respect to constructional parameters of rotationally symmetric systems,” J. Opt. Soc. Am. 58, 1494-1505 (1968).
    [13] 0. Stavroudis, “A simpler derivation of the formulas for generalized ray tracing,” J. Opt. Soc. Am. 66, 1330-1333 (1976) .
    [14] J. Kross, “Differential ray tracing formulae for optical calculations: Principles and applications,” SPIE 1013 Optical Design Method, and Large Optics, 10-18 (1988).
    [15] W. Oertmann ,”Differential ray tracing formulae; applications especially to aspheric optical systems,” SPIE 1013 Optical Design Method, and Large Optics, 20-26 (1988).
    [16] B. D. Stone and G. W. Forbes, “Differential ray tracing in inhomogeneous media,” J. Opt. Soc. Am. A 14, 2824-2836 (1997).
    [17] A. A. Shekhonin, A. V. Ivanov, L. I. Przhevalinskii, and T. I. Zhukova, "An analytical method for estimating how the design parameters affect the characteristics of optical systems", Journal of Optical Technology, Vol. 79, Iss. 5, pp. 277–282 (2012).
    [18] S. H. Brewer, "Surface-contribution algorithms for analysis and optimization," J. Opt. Soc. Am. 66, 8-13 (1976).
    [19] W. J. Smith, Modern Optical Engineering, 3rd ed., (Edmund Industrial Optics, Barrington, N.J., 2001).
    [20] 范振翔,“焦散面與初級像差之計算”,成功大學機械系碩士論文,中華民國一百零三年七月。
    [21] 黃俊瑋,“色散稜鏡與稜鏡成像位姿變化分析”,中華民國一百零三年七月

    下載圖示 校內:2020-08-28公開
    校外:2020-08-28公開
    QR CODE