| 研究生: |
林亨融 Lin, Heng-Rong |
|---|---|
| 論文名稱: |
反算設計問題於水下載具外型最佳化之研究 An Inverse Design Problem to Estimate the Optimal Shape of Underwater Vehicle |
| 指導教授: |
黃正弘
Huang, Cheng-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 核子潛艦 、拉凡格式法 、反算設計 、潛體 |
| 外文關鍵詞: | Levenberg-Marquardt Method, SUBOFF, sail, Hull |
| 相關次數: | 點閱:120 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
潛艦在水下潛行時,其阻力對潛艦的快速性和續航力有著重要的影響;因此至今,潛艦在潛行時所需克服的阻力以及渦流和機械組件所造成的噪音、震動一直是需要改善的指標,不管是核子潛艦或者是柴電潛艦皆有相同的問題,尤其核子潛艦之噪音較為嚴重。
此外,潛艦本體以及其身上的帆罩外型,皆是影響這些問題的原因之一;若在外型上有了適當的改善,就能夠降低行進阻力與減少渦流噪音,進而可提高潛艦在水中的匿蹤性以及提升動力效率,因而降低航行中被偵測之危險及減少所需耗掉之燃油成本,並提高國防作戰效益。
本論文之目的主要在於應用拉凡格式法(Levenberg-Marquardt M ethod)並搭配套裝軟體CFD-ACE+,來探討反算設計問題於潛體最佳化船型設計研究。研究方向主要分成兩部分,方向一:探討潛體外型之最佳化,方向二:進行帆罩形狀與位置之最佳化設計。
首先,吾人考慮既有之DARPA-SUBOFF模型,在體積固定條件下,觀察在不同流速下該潛體所受之阻力變化,並藉由已知模型之參數進行計算及探討,以降低模型的阻力為目標,並藉此進行最佳化處理,計算出最佳幾何外型,最後使總阻力得以下降。
緊接著以帆罩為討論目標,同樣的模型且在帆罩體積變化不大之條件下,以帆罩外型前端曲面之曲度及中心位置作為變化參數,並進行參數修正,同樣藉拉凡格式法進行計算及探討,並找出最佳化帆罩曲面之曲度以及最佳位置,並觀察帆罩周圍流場的變化,同時也是以降低潛體阻力為目標。
This research uses the Levenberg-Marquardt Method and the commercial package CFD-ACE+ in the development of a submarine shape optimization design. It’s mainly divided into two directions: direction one is to explore the optimal shape of a submarine’s main body; and direction two is to explore the optimal sail shape and its optimal location. First, with reference to the existing basic submarine model, DARPA-SUBOFF, and under the condition of a fixed volume, we observe that resistance changes under different speeds. Using the parameters of the known model to calculate and explore and reduce the resistance of the model is the goal. To optimize this submarine’s model shape, we find the best body geometry, thereby making the total resistance reduced. Next, the submarine sail is the discussion target under the condition that the model sail volume only changes a little bit. The shape of the curvature of the front surface of the sail and its central position is the changed parameter, and then we correct and optimize it. Afterwards, we try to find the best curvature and the best position to reduce the total resistance. From the results, our optimization can be seen. The main body (Hull) shape doesn’t change. But the sail parameters change, which not only optimizes its position and the curvature of its surface, but also the two together achieve optimization. In this case, the resistance reduction phenomenon has occurred.
參考文獻
1.Hoerner, S.F. Fluid-Dynamic Drag, 1965.
2.Joubert, P.N, Some Aspects of Submarine Design Part 2. Shape of a Submarine 2026, Defence Science and Technology Organisation, 2006.
3.Warren, C.L. and Thomas, M.W., Submarine Hull Form Optimization
Case Study, Naval Engineering Journal, November, 2000.
4.Janson, C. E. and Larsson, L., A Method for the Optimization of Ship
Hulls from a Resistance Point of View. Proceedings: of the 21st Symposium on Naval Hydrodynamics.,Trondheim, Norway, 1996.
5.Ma, K. and Tanaka, I., A Study of Minimum Resistance Hull Form With Consideration of Separation (2nd Report)., J. Kansai Soc. N. A., Japan, No. 222, (in Japanese), September, 1994.
6.Goren, J.,Helvacioglu, S. and Insel, M., Bow Form Optimization of Displacement Ships by Mathematical Programming, Ship Technology Research, Vol. 44, 1997.
7.Arentzen, E.S. and Mandel, P., Naval Architectural Aspects of Submarine Design, 1960.
8.Djatmiko, E.B. and Wardhana, W. Hydrodynamic Analysis of Additi- onal Effect of Submarine Appendages., Advances and Applications in Fluid Mechanics, 2013.
9.R.Burcher and L.Rydill, Concepts in Submarine Design, Ocean Technology Series 2, Cambridge University Press, New York, 1994.
10.Friedman, N., Submarine Design and Development, Naval Institute Press, Annapolis, 1984.
11.Gorski, J. J. and Coleman, R. M.,Use of RANS Calculations in the Design of a Submarine Sail, Paper presented at the RTO AVT Symposium on “Reduction of Military Vehicle Acquisition Time and Cost through Advanced Modeling and Virtual Simulation”, held in Paris,France,22-25, and published in RTO-MP-089, 2002.
12.宋秉儒,模擬電動車鋰離子電池模組布置的熱流特性,國立中央大學機械工程學系碩士論文,2011.
13.Karim, M. M., Rahman, M. M. and Alim, M. A.,
Computation of Turbulent Viscous Flow around Submarine Hull Using Unstructured Grid, 2009.
14.Huang, T. T. , Chang , M. S. and Groves, N.C., Geometric Characteristics of DARPA SUBOFF Models ( DTRC MODEL NOS. 5470 and 5471), DTRC/SHD-1298-01, 1989.
15.Renilson, R., Submarine Hydrodynamics, 2015.
16.CFD-RC user’s manual, ESI-CFD Inc., 2005.
17.Liu H. L. and Huang, T. T. , Summary of DARPA Suboff Experimental Program Data, CRDKNSWC/HD-1298-11,1998.
18.黃以丞,後插式Suboff潛艦模型設計及阻力試驗,國立成功大學系統及船舶機電工程學系碩士論文,2017.
19.Marquardt, D.M., “An algorithm for least-squares estimation of nonlinear parameters”, J. Soc. Indust. Appl. Math., Vol. 11, pp. 431–441, 1963.