| 研究生: |
施健一 Shih, Jian-Yi |
|---|---|
| 論文名稱: |
苯並三唑類紫外線吸收劑在碳-5位羰基取代之實驗與理論計算探討 Experimental and Theoretical studies of 2-(2'-hydroxy-5'-methylphenyl)benzotriazole Derivatives modified at C-5' position with carbonyl groups. |
| 指導教授: |
黃福永
Huang, Fu-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 194 |
| 中文關鍵詞: | 苯並三唑類紫外線吸收劑 、分子內氫鍵 、紫外線吸收 、紅外光光譜 、密度泛函理論 、量子力學 、ab 初始法 、理論計算 |
| 外文關鍵詞: | Tinuvin P, UV absorbers, IMHB, UV absorption, FT-IR, density functional theory, quantum mechanics, ab initial method, theoretical calculations. |
| 相關次數: | 點閱:151 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
藉由理論計算導向的方式,包括分子結構最佳化、可能電子光譜的預測(紫外-可見光光譜)及振動光譜(遠紅外光光譜),合成出了一系列新型的紫外線吸收劑化合物。
為了與實驗所得的光譜更加符合,使理論計算所得的光譜更接近實驗結果,引入了在積分方程式連續極化模型(IEF-PCM)下模擬化合物在氯仿內的溶劑效應,使理論計算更貼近實際的實驗環境;此外,並比較了各種不同的理論計算方法、計算基底的組合,找出最能符合實際的最佳計算方法,發現B3LYP/6-311+G(d,p)是最佳的理論計算方法,可用來解釋實驗的結果。
在所有目標產物中,在碳-5'位上修飾羧酸基的化合物三有最佳的UV-A (315 - 400nm)和UV-C (200 - 280 nm)範圍的吸收能力,而一樣也在碳-5'位上修飾醛基的化合物一有最佳的UV-B (280 - 315 nm)範圍的吸收能力,我們認為在UV-A範圍吸收能力的提升是由於分子內氫鍵的增強,而UV-B與UV-C 範圍吸收能力的提升是由於分子共軛系統的延伸。
理論預測與實驗所得的遠紅外光光譜可以驗證目標化合物相較於Tinuvip P 分子內氫鍵的增強效果,OH鍵振動波數會因為氮上孤對電子超共軛電子轉移至OH *鍵結軌域而減少鍵結能量,導致波峰紅位移至較低的位置,得到的結果不僅與UV-A範圍吸收光譜圖吻合,也與H1-NMR測量結果相同,目標化合物相較於Tinuvip P,OH波峰會往較高場的位置移動,證明有較強的分子內氫鍵效應。
除了有分子內氫鍵穩定的enol構型,trans-keto 構型也在電子激發躍遷的過程中,對於紫外吸收光譜提供了很大的貢獻,分析可見的分子軌域,得到在吸收過程中電子密度轉移差示意圖,藉此可以更加瞭解電子激發的機制和原理。
我們期望能發現最佳的分子構型、溶劑效應、理論計算方法、計算基底組合與紫外線吸收光譜的電子激發躍遷原理來提供有幫助且具有用資訊的分子性質,幫助紫外線吸收劑化合物在未來能有更進一步的發展與應用。
關鍵字: 苯並三唑類紫外線吸收劑、分子內氫鍵、紫外線吸收、紅外光光譜、密度泛函理論、量子力學、ab 初始法、理論計算。
A variety of novel UV absorbers modified at the C5’ position have been synthesized based on the theoretical calculations including optimized molecular structures, predicted electronic and vibrational spectra (UV-Vis and IR spectra).
In order to explain the experimental UV spectra, chloroform solvent effect was introduced into calculation with Integral Equation Formalism Polarizable Continuum Model (IEFPCM) to create an environment more close to that of the real experimental. In addition, different combinations of theoretical calculation basis-sets were employed and tried to obtain the best results, which well fit to our experimental results. And it was found that B3LYP/6-311+G(d,p) was the best calculation level with more reliable results and relatively low computing cost.
Among our target molecules, compound 3 modified with carboxyl group at C-5' position showed the best UV-A (315 - 400 nm) and UV-C (200 - 280 nm) absorption ability; while compound 1 modified with formyl group at C-5' position showed the best UV-B (280 - 315 nm) absorption ability. The comparison of UV spectra of compounds 1 with that of compound 6 indicated that the enhancement of UV-A range absorption is due to the strengthening of intramolecular hydrogen bond (IMHB) effect. It also found that the comparison of UV spectra between compound 1 and 2 indicated that the enhancements of UV-B, UV-C range absorption are due to the extension of the conjugation systems at C5’ position.
Theoretical calculated and experimental FT-IR spectra were used to ascertain that the IMHB of our target molecules were more strengthening compared to that Tinuvip P. This was observed that the OH bonding stretching wavenumber of the experimental result was red-shifted, indicating the IMHB between N1 and C2-OH became stronger. This could be explain by the calculation results showing there was a hyperconjugative charge transfer from the lone pair of N atom to OH * bonding orbital as to result in decreasing the OH bond energy. This results not only corresponded with the UV-A range absorption spectra but also corresponded with the H1-NMR spectra, in which the OH peak was shifted to more down-field.
The calculation results showed that the enol form was favored for compound with IMBH and trans-keto form was favored for compounds with IMHB and modified at C5’ with carbonyl group. The comparisons between experiment and calculation results showed that the UV-C absorption was mainly due to the existence of trans-keto from and the UV-A was mainly due to the existence of enol form. Optical molecular orbitals calculation showed that UV-A absorption was due the electron transfer from the hydroxyphenyl moiety to benzotriazole moiety; while the UV-B and UV-C absorptions were due to the electron transfer from the hydroxylphenyl moiety to the C5’ carbonyl group.
[1] Molina, M. J; Rowlan, F. S. Nature 1974, 249, 810.
[2] Fahey, D. W., and M. I. Hegglin (Coordinating Lead Authors), Twenty Questions And Answers About the Ozone Layer 2010 Update
[3] Davies H, Bignell GR, Cox C, et al .Mutations of the BRAF gene in human Cancer, Nature 2002,417,949
[4] Veronique Trichet a, St phane Grelier a, Alain Castellan, Hasneen Choudhury b, R. Stephen Davidson, Journal of Photochemistry and Photobiology A: Chemistry. 95 (1996) 181 - 188
[5] Ciba Specialty Chemicals Inc., Basle, Switzerland, Progress in Organic Coatings. 35 (1999) 223-233
[6] Byoung-Hoo Lee, Hyun-Joong Kim. Polymer Degradation and Stability.91 (2006) 1025-1035
[7] A. Salinaro, A.V. Emeline, J. Zhao, H. Hidaka, V.K. Ryabchuk, N.Serpone, Pure Appl. Chem. 71 (1999) 321.
[8] N. Serpone, A. Salinaro, Pure Appl. Chem. 71 (1999) 303.
[9] Morabito, K.; Shapley, N. C; Steeley, K. G.; Tripathi, A. Int J Cosmet Sci. 2011, 33, 385.
[10] Sunscreen drug products for over-the-counter human use, Final Monograph, Federal Register 64 27666, US Food and Drug Administration,Rockville, MD, 2000. Available from: <http://www.cfsan.fda.gov/~lrd/fr990521.html>
[11] Nick Serpone, Daniele Dondi, Angelo Albini, Inorganica Chimica Acta 360 (2007) 794-802
[12] Fujita; Taira, Y.; Kondo, A; Nozomi, A.; Takashi; Sumitomo Chemical Company, Limited, Kyoto Chemical Company, Ltd 1978; Vol. US4077971.
[13] Adler; S., A.; Ciba-Geigy Corporation 1979; Vol. US4141903
[14] Ciba Specialty Chemicals, Inc.; TINUVIN P Benzotriazole UV Absorber.
[15] 山敏行,多機能安定劑JAST一500[J],Fine Chemicals (Japan) 1998,27(15):15-19.
[16] Weber, K. Z. Phys. Chem. 1931, B15, 18
[17] (a) A. Weller, Z. Elektrochem., 1952, 56, 662 (b) A. Weller, Z. Elektrochem., 1954, 58, 849 (c) A. Weller, Z. Phys. Chem., 1957, 13, 335 (d) A. Weller, Z. Phys. Chem., 1958, 17, 224 (e) A. Weller, Z. Phys. Chem., 1958, 15, 438 (f) A. Weller, Prog. React. Kinet., 1961, 1, 189 (g) A. Weller, Faraday Discuss. Chem. Soc., 1965, 39, 183
[18] (a) T. Förster, Z. Elektrochem., 1950, 54, 42 (b) T. Förster, Pure Appl. Chem., 1970, 24, 443
[19] Michael Kash. J. Phys. Chem. 1991, 95, 2668-2674
[20] Andrzej L. Sobolewski. Phys. Chem. Chem. Phys., 2006, 8, 3410-3417
[21] Soo Young Park. J. AM. CHEM. SOC. 2006, 128, 14542-14547
[22] Ajay Misra. Computational and Theoretical Chemistry 1031 (2014) 50-55
[23] Organero ,J. A.; Moreno, M; Santos, L. a.; Lluch, J. M; Douhal, A. J. phys. Chem. A 2000, 104, 8424.
[24] Catalan,J.; Paz, J. L .G. d. J. Phys. Chem. A 2001, 105, 7315.
[25] Yahagi, T; Fujii, A.; Ebata, T.; Mikami, N. J. Phys. Chem. A 2001, 105, 10673.
[26] Chowdhury, P.; Panja, S.; Chakravorti, S. J. Phys. Chem. A 2003, 107, 83.
[27] Sakota,K; Sekiya, H. J. Phys. Chem. A 2003, 107, 83.
[28] Nikhil Guchhait. Photochem. Photobiol. Sci., 2010, 9, 57-67
[29] John C. Crawford. Prog. Polym. Sci. 24 (1999) 7-43
[30] Rosevear, J.; Wilshire, J. Aust. J. Chem. 1985, 38, 1163
[31] Kocher, C.; Weder, C.; Smith, P.J. Mater. Chem. 2003, 13, 9.
[32] Liu, G.-B.; Zhao, H.-Y.; Yang, H.-J.; Gao, X.; Li, M.-K.; Thiemann,T. Adv. Synth. Catal. 2007, 349, 1637
[33] Forés, M.; Scheiner, S. Chem. Phys. 1999, 246, 65
[34] Nicholas J. Turro; Ravi Ravichandran. J. Phys. Chem. A 2002, 106, 7680-7689
[35] Christoph Kocher. J. Mater. Chem., 2003, 13, 9-15
[36] Michael A. Robb; Lluı´s Blancafort. J. AM. CHEM. SOC. 2004, 126, 2912-2922 (Stasyuk, Bultinck et al. 2016)
[37] Yao Lu. Yulong Gong. Chin. Sci. Bull. (2014) 59(34):4741-4751
[38] Fleming, G. R. Chemical Application of Ultrafast Spectroscopy; Oxford University Press: New York, 1986.
[39] Barbara, P. F.; Rentzepis, P. M.; Brus, L. E. J. Am. Chem. Soc.1980, 102, 2786.
[40] Tatsuo Arai. J. Phys. Chem. A 2010, 114, 1603-1609
[41] Jianzhang Zhao; Huimin Guo. Phys. Chem. Chem. Phys., 2012, 14, 8803-8817
[42] Daniel T. Gryko. "The effect of hydrogen bond strength on emission properties in 2-(2’-hydroxyphenyl)imidazo[1,2-a]pyridines." Journal of Photochemistry and Photobiology A: Chemistry 314 (2016) 198-213.
[43] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett., 77 (1996) 3865-68.
[44] J. P. Perdew, K. Burke, and M. Ernzerhof, “Errata: Generalized gradient approximation made simple,” Phys. Rev. Lett., 78 (1997) 1396.
[45] C. Adamo and V. Barone, “Toward reliable density functional methods without adjustable parameters: The PBE0 model,” J. Chem. Phys., 110 (1999) 6158-69.
[46] E. Canses, B. Mennucci, J. Tomasi, J. Chem Phys. 107, 3032 (1997).
[47] J. Tomasi, M. Persico, Chem. Rev. 94, 2027 (1994).
[48] J. Tomasi, B. Mennucci, R. Camm, Chem. Rev. 105, 2999 (2005).
[49] A. E. Reed and F. Weinhold, “Natural bond orbital analysis of near-Hartree-Fock water dimer,” J. Chem. Phys., 78 (1983) 4066-73.
[50] A. E. Reed, R. B. Weinstock, and F. Weinhold, “Natural-population analysis,” J. Chem. Phys., 83 (1985) 735-46.
[51] A.E. Reed, F. Weinhold, “Natural Localized Molecular Orbitals,” J. Chem. Phys., 83 (1985) 1736-40.
[52] J. Chem. Phys., 78 (1983), pp. 4066–4073
[53] A.E. Reed, R.B. Weinstock, F. Weinhold (1985).
[54] J. Chem. Phys., 83 (1985), pp. 735–746
[55] Perdew, J. P.; Tao, J.; Staroverov, V. N.; Scuseria, G. E. J. Chem. Phys. 2004, 120, 6898.
[56] Y. Zhao, D.G. Truhlar, Benchmark databases for nonbonded interactions and their use to test density functional theory, J. Chem. Theory Comput. 1 (2005)415–432.
[57] Phys. Chem. Chem. Phys., 2001, 3, 3012È3017
[58] B.K. Paul, N. Guchhait. Computational and Theoretical Chemistry 966 (2011) 250–258
[59] J. Chem. Phys. 137, 091-101 (2012).
[60] J. Phys. Chem. A 2005, 109, 2937-2941
[61] Optik 127 (2016) 5055–5064
[62] Wiechmann, M.; Port, H.; Frey, W.; La¨rmer, F.; Elsa¨sser, T. J. Phys. Chem.
1991, 95, 1918-1923.
[63] Chudoba, C.; Riedle, E.; Pfeiffer, M.; Elsaesser, T. Chem. Phys. Lett. 1996, 263, 622-628.
[64] J. Chem. Soc., Faraday Trans., 1997, 93(9), 1691-1696.
[65] Multiwfn, Tian Lu, Beijing Kein Research Center for Natural Sciences, 2015.
[66] Carlo Adamo, Denis Jacquemin. Chem. Soc. Rev., 2013, 42, 845-856
[67] Shih-Hsin Wu, The UV Absorption Study of 2-(2’-hydroxyphenyl) benzotriazole Modified at 5’ position, National Cheng Kung University, 2015.